Skip to main content

Community Repository Search Results

resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. 'Be a Scientist!' is a full-scale development project that examines the impact of a scalable, STEM afterschool program which trains engineers to develop and teach inquiry-based Family Science Workshops (FSWs) in underserved communities.
DATE:
TEAM MEMBERS: Tara Chklovski
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. DEVISE was conceived to address the need for improved evaluation quality and capacity across the field of citizen science.
DATE:
TEAM MEMBERS: Tina Phillips
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The purpose of this research is to advance theoretical and practical understanding of how participation in citizen science fosters and/or supports lifelong science learning. We are specifically examining the relationship between engagement, science learning, and science identity.
DATE:
TEAM MEMBERS: Tina Phillips
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The project investigates how Co-generative Dlogue (cogen), a respectful conversation among students and scientists for improving teaching and learning, may produce more engaging and productive interactions and learning environments.
DATE:
TEAM MEMBERS: Pei-Ling Hsu
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. This project's interdisciplinary team will carry out research and training that will identify ways for professionals in science, technology, engineering, and mathematics (STEM) to engage with public audiences that currently lack the community connections, resources, time, or know-how to gain access to science education and to scientists.
DATE:
resource research Public Programs
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Head Start on Engineering is a pathways project focused on developing the foundations of a long-term, community-based research program to (a) understand how preschool children (4 years old) and their families develop engineering-related interests in early childhood and (b) develop community partnerships and programs that support engineering interest pathways for these families.
DATE:
TEAM MEMBERS: Scott Pattison
resource research Public Programs
“Investigating the Long-term Effects of Informal Science Learning at Zoos and Aquariums” aimed to identify the opportunities for and barriers to researching the long-term effects of informal science learning experiences at zoos and aquariums, and to construct a proposal for a five- to ten-year study as the first attempt to measure those effects. This report summarizes the findings and recommendations of the one-year project, which concluded in November 2015.
DATE:
TEAM MEMBERS: Sarah Thomas Nicole Ardoin Murray Saunders
resource research Media and Technology
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The Truth About Trees Community Story Project is part of a multiplatform media initiative that aims to raise awareness of the indispensable role of trees for all life on Earth.
DATE:
TEAM MEMBERS: Wendy Pollock
resource evaluation Public Programs
Citizen Science 2015 was the inaugural conference of the Citizen Science Association (CSA). The conference planned for two days of building connections and exchanging ideas across a wide spectrum of disciplines and experiences and was held February 11th and 12th in San Jose, California, as a pre-conference of the American Association for the Advancement of Science's Annual Meeting. In addition to the other strands, a specific strand dedicated to education was held to identify opportunities and strategies to support the integration of citizen science into the Science, Technology
DATE:
TEAM MEMBERS: Joe E Heimlich Gary Timko
resource project Public Programs
This research oriented project integrates the informal and formal science education sectors, bringing their combined resources to bear on the critical need for well-prepared and diverse urban science teachers. It represents a partnership among The City College of New York (CCNY), the New York Hall of Science (NYHOS), and the City University of New York Center for Advanced Study in Education (CUNY-CASE). It integrates the Science Career Ladder, a sustained program of informal science teaching training and employment at the NYHOS, with the CCNY science teacher preparation program. The longitudinal and comparative research study being conducted is designed to examine and document the effect of this integrated program on the production of urban science teachers. Outcomes from this study include a new body of research related to the impact of internships in science centers on improving classroom science teaching in urban high schools. Results are being disseminated to both the informal science education community (through the Association for Science and Technology Centers and the Center for Informal Learning in Schools, an NSF supported Center for Learning and Teaching situated at the San Francisco Exploratorium) and the formal education community (through the National Science Teachers Association and the American Educational Research Association).

The Science Career Ladder program engages undergraduates as inquiry-based interpreters (Explainers) for visitors to the NY Hall of Science. Integrating this experience with a formal teacher certification program enables participants to coordinate experiences in the science center, college science and education classes, and K-12 classrooms. Participants receive a license to teach science upon graduating. The approach has its theoretical underpinnings in the concept of situated learning as noted by Kirshner and Whitson (1997, Situated Cognition: Social, Semiotic and Psychological Perspectives, Mahwah, NJ: Erlbaum). Through apprenticeship experiences, situated learning recreates the complexity and ambiguity of situations that learners will face in the real world. Science centers provide a potentially ideal setting for situational learning by future teachers, allowing them to develop, exercise and refine their science teaching and learning skills as noted by Gardner (1991, The Unschooled Mind, New York: Basic Books).

There is a well-documented shortage of science teachers in urban school districts. The causes of this shortage relate to all phases of the teacher professional continuum, from recruitment through training and retention. At the same time, the demographic composition of American teachers is increasingly out of synch with the demographics of the student population, raising concerns that a critical shortage of role models may be at hand, contributing to a worsening situation in urban schools. In the face of these challenges many innovative teacher recruitment and teacher preparation programs have been developed to augment traditional pathways to teaching. These programs range from high school academies for students expressing an interest in teaching to the recruitment and training of individuals making mid-life career changes. The CLUSTER program described above represents a new alternative. There are more than 250 science centers in the United States. Many of these have extensive youth internship programs and collaborative relationships with local colleges. Therefore, the proposed model is widely applicable.
DATE: -
resource evaluation Public Programs
In Spring 2006, the Missouri Botanical Garden received a National Science Foundation grant to fund the LIONS program. LIONS trained educators from the St. Louis region, through professional development about place-based education, to deliver after school and summer programming to students grades 5 through 8. Since its inception, the LIONS program has included evaluation of program implementation and outcomes. There were dramatic changes in the scope of the program, which expanded beyond the originally targeted University City school district by adding additional schools recruited by LIONS
DATE:
TEAM MEMBERS: Rachel Becker-Klein David Chase
resource project Public Programs
The Cyberlearning and Future Learning Technologies Program funds efforts that support envisioning the future of learning technologies and advance what we know about how people learn in technology-rich environments. In this Cyberlearning EAGER project, the project team is developing foundations for using "paper mechatronics" as a learning technology. Paper mechatronics makes possible a craft-oriented approach to engineering and computing education that integrates key concepts from mechanical engineering, electrical engineering, control systems, and computer programming, while using paper as the primary material for learner design, exploration, and inquiry. In this approach, learners will design foldable paper components and assemblies; program motors, sensors and controls; test their ideas iteratively; and share their designs on a website. This paper-based modeling approach to learning concepts in and practices of mechanical engineering, electrical engineering, control systems, and computer programming ultimately aims to make it possible for all learners to have exposure to and the opportunity to participate in creative engineering, design, and computer programming.

The approach to learning through designing and making through paper mechatronics is made possible by a convergence of many different technological factors -- the array of small computers, sensors, and actuators that are becoming available at low cost and a size that children can use; availability of a wide variety of manipulable conductive materials (threads, paints, fabrics); low-cost and precise desktop and laser cutters for paper and similar materials; a wide variety of novel paper-like materials; and new ways of interacting with the computer. The approach has its foundations in Papert's constructionism and in the current maker movement, but it has potential beyond constructionism itself, both in practice and with respect to what can potentially be learned about learning and development in in context of its use.
DATE: -
TEAM MEMBERS: Sherry Hsi Michael Eisenberg