Skip to main content

Community Repository Search Results

resource project Professional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
DATE: -
TEAM MEMBERS: Judy Nee Elizabeth Stage Dennis Bartels Lucy Friedman Jane Quinn Pam Garza Gabrielle Lyon Jodi Grant Frank Davis Kris Gutierrez Bernadette Chi Carol Tang Mike Radke Jason Freeman Bronwyn Bevan Leah Reisman Sarah Elovich Kalie Sacco
resource research Public Programs
The Coalition for Science After School was launched January 28, 2004 at the Santa Fe Institute, home to the world’s leading researchers on the study of complexity. Against the dazzling backdrop of the New Mexican mesa, 40 educational leaders from diverse but overlapping domains—science, technology, engineering and mathematics education and after-school programs—met to grapple with three emerging, important trends in youth development and science learning in this country: 1. An explosion in the number of U.S. youth attending after-school programs, and increasing links between school and after
DATE:
TEAM MEMBERS: The Coalition for Science After School Leah Reisman
resource research Public Programs
The requirement by the National Science Foundation (NSF) that research proposals include plans for "broader impact" activities to foster connections between Science, Technology, Engineering, and Math (STEM) research and service to society has been controversial since it was first introduced. A chief complaint is that the requirement diverts time and resources from the focus of research and toward activities for which researchers may not be well prepared. This paper describes the theoretical framework underlying a new strategy to pair NSF-funded nano research centres with science museums in
DATE:
TEAM MEMBERS: Museum of Science, Boston Carol Lynn Alpert
resource research Media and Technology
This report is a synthesis of ongoing research, design, and implementation of an approach to education called “connected learning.” Connected learning advocates for broadened access to learning that is socially embedded, interest-driven, and oriented toward educational, economic, or political opportunity. Connected learning is realized when a young person is able to pursue a personal interest or passion with the support of friends and caring adults, and is in turn able to link this learning and interest to academic achievement, career success or civic engagement.
DATE:
TEAM MEMBERS: Digital Media and Learning Research Hub Mizuko Ito Kris Gutierrez Sonia Livingstone Bill Penuel Jean Rhodes Katie Salen Juliet Schor Julian Sefton-Green S. Craig Watkins
resource project Media and Technology
The Global Soundscapes! Big Data, Big Screens, Open Ears Project uses the new science of soundscape ecology to design a variety of informal science learning experiences that engage participants through acoustic discovery Soundscape ecology is an interdisciplinary science that studies how humans relate to place through sound and how humans influence the environment through the alteration of natural sound composition. The project includes: (1) an interface to the NSF-funded Global Sustainable Soundscapes Network, which includes 12 universities around the world; (2) sound-based learning experiences targeting middle-school students (grades 5-8), visually impaired and urban students, and the general public; and (3) professional development for informal science educators. Project educational components include: the first interactive, sound-based digital theater experience; hands-on Your Ecosystem Listening Labs (YELLS), a 1-2 day program for school classes and out-of school groups; a soundscape database that will assist researchers in developing a soundscape Big Database; and iListen, a virtual online portal for learning and discovery about soundscape. The project team includes Purdue-based researchers involved in soundscape and other ecological research; Foxfire Interactive, an award-winning educational media company; science museum partners with digital theaters; the National Audubon Society and its national network of field stations; the Perkins School for the Blind; and Multimedia Research (as the external evaluator).
DATE: -
TEAM MEMBERS: Bryan Pijanowski Daniel Shepardson Barbara Flagg
resource project Public Programs
The National Girls Collaborative Project (NGCP) seeks to maximize access to shared resources within projects and with public and private sector organizations and institutions interested in expanding girls’ participation in science, technology, engineering, and mathematics (STEM). Funded primarily by the National Science Foundation, the NGCP is a robust national network of more than 3,000 girl-serving STEM organizations. Currently, 31 Collaboratives, serving 40 states, facilitate collaboration between more than 12,800 organizations who serve more than 7.7 million girls and 4.4 million boys. The NGCP occupies a unique role in the STEM community because it facilitates collaboration with all stakeholders who benefit from increasing diversity and engagement of women in STEM. These stakeholders form Regional Collaboratives, who are connected to local girl-serving STEM programs. Regional Collaboratives are led by leadership teams and advisory boards with representatives from K-12 education, higher education, community-based organizations, professional organizations, and industry. NGCP strengthens the capacity of girl-serving STEM projects by facilitating collaboration among programs and organizations and by sharing promising practice research, program models, and products through webinars, collaboration training, and institutes. This is accomplished through a tested comprehensive program of change that uses collaboration to expand and strengthen STEM-related opportunities for girls and women. In each replication state, the NGCP model creates a network of professionals, researchers, and practitioners, facilitating collaboration within this network, and delivering high-quality research-based professional development. Participating programs can also receive mini-grant funding to develop collaborative STEM-focused projects. To date, over 27,000 participants have been served in 241 mini-grant projects, and over 17,000 practitioners have been served through in-person events and webinars. The NGCP’s collaborative model changes the way practitioners and educators work to advance girls’ participation in STEM. It facilitates the development of practitioners in their knowledge of good gender equitable educational practices, awareness of the role of K-12 education in STEM workforce development, and mutual support of peers locally and across the United States.
DATE: -
resource research Professional Development, Conferences, and Networks
The Girls RISEnet project convened an international community to explore the role of science centers in issues of gender equity in STEM learning. This effort resulted in two major products, including this international literature review that synthesizes what is known about how science centers and museums contribute to girls' engagement with STEM, summarizes what is useful for practice, and identifies gaps in the research. In addition, an international survey identified common global themes and issues and began to outline opportunities for science centers and museums to advance gender equity.
DATE:
TEAM MEMBERS: Mary Ellen Munley Charles Rossiter
resource project Professional Development, Conferences, and Networks
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE: -
TEAM MEMBERS: Stephen Madigosky William Keilbaugh Victor Donnay Bruce Grant Thomas Schrand
resource project Media and Technology
Realizing the power of CyberLearning to transform education will require vision, strategy, and an engaged, talented community. Activities are needed to energize the community, refine and sharpen the path forward, and provide a more active and ongoing forum for clarifying the big ideas and challenging questions. In response to this need, SRI International, together with the Lawrence Hall of Science and with key support from the National Geographic Society, will organize a set of activities to advance a shared vision of the future of learning, encompassing the systems, people, and technology dimensions mutually necessary for any scalable and lasting advances in education. The innovative format for these activities is inspired by the TED talks, Wikipedia, and social networking. As in TED, a small set of leading researchers will be selected to give very short, very high quality, stimulating talks. These CyberLearning Talks will be featured at a 1-day summit meeting in Washington, DC, streamed so that local cyberlearning research communities may participate at a distance, and posted on a website. As in Wikipedia, CyberLearning Pages will be created, each page featuring a synopsis of a big idea in CyberLearning and the relevant research challenges. The 1-day conference will be followed by a small 1-day workshop focusing on how to evaluate cyberlearning efforts, identify progress, and identify important new directions. Finally, to disseminate and stimulate conversation about both the video talks and Wikipedia entries, a presence for the community will be created on social networking sites. The target outcomes of the effort will be (i) a cyberlearning research community with participants from across the many current constituent communities, and fostered awareness and appreciation of the broad range of expertise and interests across that wider community; (ii) foundations for sustained discussion of big ideas, insights, and challenges to help this new community define a more engaged, crisper vision of its own future, (iii) a community resource that can become a site for interconnecting stakeholders in the CyberLearning community and supporting investigators in improving field-generated proposals, and (iv) an emerging sense of direction for CyberLearning among a wider audience of leaders. Such community building and awareness is expected to foster collaborations that will lead to innovative and research-grounded ways of using technology to transform education -- formal and informal and across a lifetime.
DATE: -
resource project Media and Technology
Researchers at Michigan State University, University of Washington, Science Museum of Minnesota, and Museum of Life and Science found that there are clear indicators of learning in Science Buzz (www.sciencebuzz.org), the online museum environment studied as part of the Take 2 project. People who participate in conversations through the Buzz blog demonstrate an interest in science, and they leverage their own experiences and identities in order to share science knowledge with others. Researchers utilized indicators of learning as identified in the National Academies report on Learning Science in Informal Environments. Aspects of learning that were particularly important for an online environment like Science Buzz were interest in science, participating in science through the use of language, and identifying as someone who knows about or uses science. Researchers found that Science Buzz participants had a strong interest in scientific issues, utilized argumentation strategies--an important scientific practice--and identified with the importance of science in their lives. In particular: (1) Interest in scientific issues, caring about scientific issues, identifying personally with scientific issues were commonly evident in Science Buzz; (2) There is widespread use of argumentation in relation to scientific issues, an important scientific practice, although the quality of the scientific reasoning associated with these argumentation practices varies; (3) The co-construction of identity between online participants and the host museum is a potentially powerful outcome, as it suggests that online learning environments can facilitate longer-term relationships; (4) The analytical tools developed by this project advance our ability to understand learning in online environments; (5) While some indicators of learning are present, others, such as reflecting on science or co-constructing science knowledge with others, are not present. For museums, encouraging museum staff to engage digital tools and online participants is relatively easy. However, measuring online activity with regard to complex outcomes like learning is extremely difficult. Perhaps the most useful outcome of the Take 2 project, therefore, is a tool that will enable museums to make sense of online activity in relation to powerful outcomes like learning.
DATE:
TEAM MEMBERS: kris morrissey Jeff Grabill Bill Hart-Davidson Kirsten Ellenbogen Deborah Perry Troy Livingston Stacey Pigg Katie Wittenauer Beck Tench Alex Curio
resource project Public Programs
This Nanoscale Science and Engineering Center (NSEC) is a collaboration among Harvard University, the Massachusetts Institute of Technology, the University of California—Santa Barbara, and the Museum of Science—Boston with participation by Delft University of Technology (Netherlands), the University of Basel (Switzerland), the University of Tokyo (Japan), and the Brookhaven, Oak Ridge, and the Sandia National Laboratories. The NSEC combines "top down" and "bottom up" approaches to construct novel electronic and magnetic devices with nanoscale sizes and understand their behavior, including quantum phenomena. Through a close integration of research, education, and public outreach, the Center encourages and promotes the training of a diverse group of people to be leaders in this new interdisciplinary field.
DATE: -
TEAM MEMBERS: Robert Westervelt Bertrand Halperin
resource project Public Programs
The Nanoscale Science and Engineering Center entitled New England Nanomanufacturing Center for Enabling Tools is a partnership between Northeastern University, the University of Massachusetts Lowell, the University of New Hampshire, and Michigan State University. The NSEC unites 34 investigators from 9 departments. The NSEC is likely to impact solutions to three critical and fundamental technical problems in nanomanufacturing: (1) Control of the assembly of 3D heterogeneous systems, including the alignment, registration, and interconnection at three dimensions and with multiple functionalities, (2) Processing of nanoscale structures in a high-rate/high-volume manner, without compromising the beneficial nanoscale properties, (3) Testing the long-term reliability of nano components, and detect, remove, or prevent defects and contamination. Novel tools and processes will enable high-rate/high-volume bottom-up, precise, parallel assembly of nanoelements (such as carbon nanotubes, nanorods, and proteins) and polymer nanostructures. This Center will contribute a fundamental understanding of the interfacial behavior and forces required to assemble, detach, and transfer nanoelements, required for guided self-assembly at high rates and over large areas. The Center is expected to have broader impacts by bridging the gap between scientific research and the creation of commercial products by established and emerging industries, such as electronic, medical, and automotive. Long-standing ties with industry will also facilitate technology transfer. The Center builds on an already existing network of partnerships among industry, universities, and K-12 teachers and students to deliver the much-needed education in nanomanufacturing, including its environmental, economic, and societal implications, to the current and emerging workforce. The collaboration of a private and two public universities from two states, all within a one hour commute, will lead to a new center model, with extensive interaction and education for students, faculty, and outreach partners. The proposed partnership between NENCET and the Museum of Science (Boston) will foster in the general public the understanding that is required for the acceptance and growth of nanomanufacturing. The Center will study the societal implications of nanotechnology, including conducting environmental assessments of the impact of nanomanufacturing during process development. In addition, the Center will evaluate the economic viability in light of environmental and public health findings, and the ethical and regulatory policy issues related to developmental technology.
DATE: -
TEAM MEMBERS: Ahmed Busnaina Nicol McGruer Glen Miller Carol Barry Joey Mead