This document describes the Dimensions of Success (DoS), an assessment tool created by researchers at the Program in Education, Afterschool, and Resiliency (PEAR). DoS was created to help out-of-school time programs and researchers monitor and measure quality. It allows observers to collect systemic data along 12 quality indicators to pinpoint the strengths and weaknesses of afterschool science learning experiences.
DATE:
TEAM MEMBERS:
Anahit PapazianAshima ShahCaitlin Rufo-McCormick
Although stakeholders agree that afterschool STEM education can be powerful, there is less agreement on the critical question of which aspects of STEM education the afterschool field is best positioned to support. Hence, in spring 2012, the Afterschool Alliance undertook a study to ask afterschool stakeholders what aspects of STEM learning the field is best positioned to support. The aim of the Afterschool STEM Outcomes Study was to identify consensus views on appropriate and feasible outcomes and indicators for afterschool STEM programs. The study provides a realistic vision of the field’s
Exposing American K-12 students to science, technology, engineering, and math (STEM) content is a national initiative. Game Design Through Mentoring and Collaboration targets students from underserved communities and uses their interest in video games as a way to introduce science, technology, engineering, and math topics. This article describes a Game Design Through Mentoring and Collaboration summer program for 16 high school students and 3 college student mentors who collaborated with a science subject matter expert. After four weeks, most students produced 2-D video games with themes based
DATE:
TEAM MEMBERS:
Neda KhaliliKimberly SheridanAsia WilliamsKevin ClarkMelanie Stegman
The article focuses on an educational program called Game Design Through Mentoring and Collaboration. The program is a partnership between McKinley Tech and George Mason University (GMU) in Fairfax, Virginia. Through this program the teachers ensure students understand the pathways needed for participation in the science, technology, engineering, and math (STEM) enterprise. Kevin Clark, is the principal investigator of the program.
Web 2.0 technologies have introduced increasingly participatory practices to creating content, and museums are becoming interested in the potentials of “Museum 2.0” for reaching and engaging with new audiences. As technological advances are opening up the ways in which museums share information about the objects in their collections, the means by which museums create, handle, process, and transmit knowledge has become more transparent. For this to be done effectively, however, some underlying contradictions must be resolved between museum practices, which privilege the account of the “expert,”
DATE:
TEAM MEMBERS:
Ramesh SrinivasanRobin BoastJonathan FurnerKatherine Becvar
This paper suggests new strategies for introducing students to robotics technologies and concepts, and argues for the importance of providing multiple entry points into robotics. In particular, the paper describes four strategies that have been successful in engaging a broad range of learners: (1) focusing on themes, not just challenges; (2) combining art and engineering; (3) encouraging storytelling; (4) organizing exhibitions, rather than competitions. The paper describes a new technology, called the PicoCricket, that supports these strategies by enabling young people to design and program
DATE:
TEAM MEMBERS:
Natalie RuskMitchel ResnickRobbie BergMargaret Pezalla-Granlund
The summative evaluation of the Farming for Fuels classroom program and family event was conducted over two years. Two interim reports were delivered with preliminary results about specific areas of focus. This final report described the overall evaluation study methods and results, and made recommendations for potential revisions and improvements to the program. The evaluator worked with the program team at the Creative Discovery Museum to generate a list of questions to guide the evaluation study. The questions covered each of the major audiences for the program: museum educators, teachers
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.
The article discusses how STEM (Science, Technology, Engineering, and Mathematics) education resources can be implemented in to public libraries and services for teenagers. The author notes that with an increased importance placed on STEM subjects, it is important for librarians to consider resources and programs for students beyond what they typically offer. The article lists suggested ways librarians can integrate STEM into public library work, including introducing STEM resources to students when visiting schools, promoting STEM programs to parents and educators, and creating STEM booklists
The article discusses ways racial and ethnic minorities are excluded from science, technology, engineering and math (STEM) fields. According to the article, the lack of minority STEM professionals in industries is blamed on their less rigorous early educational experience, lack of mentors and difficult work environment. Library staff can help alleviate many of these disadvantages through teacher education and thoughtful programming for students in a professional environment.
The article discusses the Helen M. Marshall Children's Library Discovery Center in Jamaica, New York. The resource center is designed to encourage science learning, reflect the cultural aspects of Queens, New York, and allow students to engage in science experiments. Exhibits mentioned in the article include bug observations, color mixing, and using touch sensors to identify objects. Other topics discussed by the author include incorporating STEM (Science, Technology, Engineering and Math) education, library outreach programs, and teenagers on the library staff.
The article discusses how STEM (Science, Technology, Engineering, and Math) education will affect the work of teen librarians and the Young Adult Library Services Association (YALSA). According to the article, YALSA created a STEM task force whose objectives include developing a list of recommended reading related to STEM, compiling STEM resources online, and creating a "STEM in Libraries" toolkit.