Skip to main content

Community Repository Search Results

resource project Public Programs
Disparities in engineering participation and achievement by women and individuals from traditionally underserved racial and ethnic groups have been persistent. Approaches outside the context of university and school reform, including approaches to supporting interest development in early childhood, have not been fully considered by educators and policymakers. This AISL Pathways project will focus on engineering, which has emerged as a critical topic in the STEM education field and a prominent aspect of educational standards and policies. Building on a strong empirical and theoretical base, it will lay the foundation for future research efforts to advance the field's limited understanding of early childhood engineering-related interest development, especially through parent-child interactions; create research tools for studying engineering-related interest in young children; and identify effective strategies for supporting long-term engineering interest pathways. "Head Start on Engineering" is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Through an asset-based approach and authentic engagement with families and community organizations, Head Start on Engineering will pilot research and program activities that are sensitive to the constraints of low-income families and build on the resources and funds of knowledge within these communities. It will test and refine an innovative, theoretical model of early childhood interest development. The overall design of the pilot study will be mixed-method and short-term longitudinal, with data collected before, during, and after program implementation from participating families. Quantitative measures will allow for consistent comparisons across groups and within families, while qualitative data will help explore complex factors and processes hypothesized in the theoretical framework and related to program implementation. This work will allow the team time to address unanswered questions and issues around how to feasibly operationalize key aspects of the revised theoretical model in preparation for more extensive, longitudinal and experimental investigations as part of the next phase of the project. Understanding and honoring parents' beliefs, knowledge, and experiences is central to this project. In developing and implementing both the programs and research activities, the team will adopt culturally responsive and asset-based perspectives. The Pathways project is a collaboration between the Institute for Learning Innovation (ILI), a nonprofit organization dedicated to the advancement of lifelong, free-choice learning for all communities through research, practice, and policy initiatives; Mt. Hood Community College Head Start program; the Oregon Museum of Science and Industry (OMSI), a nationally renowned science museum; and the Center for STEM Education at the University of Notre Dame. The project involves families with four-year-old children who attend the Head Start program. The collaboration between educators, community organizations, and researchers and the integrated approach to research and program development will ensure that study findings translate to practical and effective education strategies and that future research efforts are well-grounded in the realities of practitioners and learners.
DATE: -
resource project Public Programs
Over the last decade there has been a proliferation of out-of-school environments that foster building, making, tinkering, and design activities, creating an unprecedented opportunity to engage a wide range of participants in mathematics that is both purposeful and powerful. To date, this opportunity has been almost universally unexploited. The conference, which will take place at and in collaboration with the New York Hall of Science, will gather fifty researchers and practitioners from informal mathematics education and the burgeoning "making and tinkering" movement for two days to collaboratively generate approaches to integrating mathematics in making and design environments and programs. The project, which includes pre- and post-conference activities, will produce a sampler of Math in Making activities, a guidebook, a white paper for research and practice, a retrospective online discussion, and further dissemination of project deliverables. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Through the conference and pre- and post-conference activities, the project team will: - Initiate and sustain conversations between researchers and practitioners; - Establish collaborations that lead to changes in the way math is framed and highlighted in making and design environments; - Create resources to help people in the making/design community highlight the math in their environments; and - Frame a research agenda to guide studies of mathematical reasoning and attitudes towards math in making and design environments. The work includes an extensive evaluation process of the conference and of pre- and post-conference activities.
DATE: -
resource evaluation Public Programs
The fifth annual Invent It. Build It. event, sponsored by the Society of Women Engineers (SWE), Girl Scouts of the USA, WGBH’s Design Squad Global, the ExxonMobil Foundation, and Techbridge was held at the SWE annual conference in Los Angeles, CA. Participants included a record-breaking 619 middle school girls, plus 300 of their parents/guardians and middle school educators. More than 200 SWE members volunteered at the event to facilitate the activities, act as role models, and work closely with the middle school girls throughout the day. Thirty-two exhibitors provided information about camps
DATE:
TEAM MEMBERS: Concord Evaluation Group Christine Paulsen
resource project Media and Technology
The range of contemporary "emerging" technologies with far-reaching implications for society (economic, social, ethical, etc.) is vast, encompassing such areas as bioengineering, robotics and artificial intelligence, genetics, neuro and cognitive sciences, and synthetic biology. The pace of development of these technologies is in full gear, where the need for public understanding, engagement and active participation in decision-making is great. The primary goal of this four-year project is to create, distribute and study a set of three integrated activities that involve current and enduring science-in-society themes, building on these themes as first presented in Mary Shelley's novel, Frankenstein, which will be celebrating in 2018 the 200th anniversary of its publication in 1818. The three public deliverables are: 1) an online digital museum with active co-creation and curation of its content by the public; 2) activities kits for table-top programming; and 3) a set of Making activities. The project will also produce professional development deliverables: workshops and associated materials to increase practitioners' capacity to engage multiple and diverse publics in science-in-society issues. The initiative is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project by Arizona State University and their museum and library collaborators around the country will examine the hypothesis that exposing publics to opportunities for interactive, creative, and extensive engagement within an integrated transmedia environment will foster their interest in science, technology, engineering and mathematics (STEM), develop their 21st century skills with digital tools, and increase their understanding, ability, and feelings of efficacy around issues in science-in-society. These three distinct yet interlocking modes of interaction provide opportunities for qualitative and quantitative, mixed-methods research on the potential of transmedia environments to increase the ability of publics to work individually and collectively to become interested in and involved with science-in-society issues.
DATE: -
TEAM MEMBERS: Edward Finn Steve Gano Ruth Wylie Rae Ostman David Guston
resource research Public Programs
This article investigates the development of agency in science among low-income urban youth aged 10 to 14 as they participated in a voluntary year-round program on green energy technologies conducted at a local community club in a midwestern city. Focusing on how youth engaged a summer unit on understanding and modeling the relationship between energy use and the health of the urban environment, we use ethnographic data to discuss how the youth asserted themselves as community science experts in ways that took up and broke down the contradictory roles of being a producer and a critic of
DATE:
TEAM MEMBERS: Angela Calabrese Barton Edna Tan
resource project Public Programs
Investigating Green Energy Technologies in the City (GET City) is a youth-based project designed to target underserved middle school students and introduce concepts in energy sustainability and environmental health. Partners include Michigan State University's College of Education and College of Engineering, Lansing Boys and Girls Club, Lansing Board of Water and Light, and Urban Options, a non-profit energy and environmental agency. Participants learn to use IT tools (GIS software, databases, and communication tools) and gain IT workforce skills, research experiences, science knowledge, and inquiry skills. Project components include bi-weekly afterschool sessions (18 weeks), a 3-week summer program with field-based design experiences, community energy events, parental involvement activities, career field trips, and a project website. Youth will also participate in an annual community fair and conduct energy audits. Topics covered include brownouts, environmental health, alternative energy sources, and green energy technologies. Youth will receive ongoing support from energy mentors and gain leadership experience. The project will result in the development of a curriculum that includes IT-based investigations with a focus on core energy concepts. GET City also includes a research component that examines youth identity development in science, engineering, and IT in an attempt to understand how the program supports participation in an IT community of practice. The research, in conjunction with the comprehensive evaluation, will contribute to the field by providing insight into how the program design fosters youth engagement and learning in science, engineering, and IT. Seventy youth will receive 280 contact hours over two years of participation.
DATE: -
TEAM MEMBERS: Angela Calabrese Barton Scott Calabrese Barton
resource project Media and Technology
The investigators address a major educational challenge by introducing a novel format and content for science education, (a) building on past successes; (b) combining development and dissemination at a new level; and (c) centered around an interactive planetarium show aimed to inform the public on an emerging scientific discipline and medical field: Tissue Engineering. For achieving a multitude of goals, the investigators propose the establishment of a unique partnership in scientific and medical education, bringing together university researchers, clinical leaders, science center experts, and students, educators and community representatives at all levels. The project is catalyzed by the Pittsburgh Tissue Engineering Initiative, a non-profit organization dedicated to the promotion of tissue engineering and its application to improving people's lives. The main goals fall in three categories, as follows: Education: - To communicate scientific information about the human body (principles of function will be emphasized over specific facts or terminology by focusing on a limited but fundamental set). -To convey the excitement and importance of tissue engineering research. The show will utilize engaging interactive demonstrations of tissue functions and illustrate the medical uses and potential of this field. Innovation: - To enhance the educational experience. The developers will use group-interactive technology as a tool for education by engaging participants as participants in the processing functions of the body. A special visualization/interactivity laboratory will be used where prototype interactive scenarios will be tested using focus groups, consultants and representatives of the target audiences. Dissemination: - To insure national distribution to other planetaria. The presentation system will utilize portable interactive technology (to be developed). It will be deployed to planetaria throughout the country, coordinated by the Association of Science and Techology Centers (ASTC). - To engage the target audience in the development process. Content development will be achieved by a consortium of leading research universities and medical centers, with input from a panel of worldclass experts. Visualization, interactivity and sound technologies will be developed in Pittsburgh, in a unique collaboration between the arts and sciences, based on past successes. Evaluation activities will be extensive, as will the range and targets of the spin-off educational materials. The Carnegie Science Center planetarium itself will serve in achieving group immersive visualization, akin to virtual reality, for improving target audience involvement. The expected outcome is a new way of delivering educational content, and a better understanding of the emerging field of tissue engineering by the general public.
DATE: -
TEAM MEMBERS: John Pollock
resource research Professional Development, Conferences, and Networks
As a part of the strategy to reach the NASA Science Mission Directorate (SMD) Science Education and Public Outreach Forum Objective 1.2: Provide resources and opportunities to enable sharing of best practices relevant to SMD education and public outreach (E/PO), the Informal Education Working Group members designed a nationally-distributed online survey to answer the following questions: 1. How, when, where, and for how long do informal educators prefer to receive science, mathematics, engineering, and/or technology content professional development? 2. What are the professional development and
DATE:
TEAM MEMBERS: NASA Science Mission Directorate Education and Public Outreach Forums Informal Education Working Group Lindsay Bartolone Suzanne Gurton Keliann LaConte Andrea Jones
resource project Public Programs
The Great Lakes Science Center, in collaboration with Case Western Reserve University (CASE), proposes to develop a permanent exhibition and related programs on biomedical engineering. The successful implementation of this project would allow CASE and GLSC to inform a broad constituency about select biomedical research advancements, applied technologies, and their relevance to society. When the project is completed, we will be able to expose many thousands of visitors each year to the updated exhibition - increasing their interest in and understanding of important science concepts underlying advancements in biomedical technology. The exhibition would encompass approximately 2000 square feet and feature approximately 20 exhibits, most of which would be interactive. The major audiences for the exhibition include families, school groups, and general museum visitors. The BioMedTech exhibition is located on the Science Center's main floor, which places an emphasis on the science and technology of particular importance to Northeast Ohio. The exhibition will be accompanied by educational programming, public programs, and wide dissemination around the region and within the Science Center world. When fully implemented, the project could reach many hundreds of thousands of visitors and garner national attention through dissemination efforts. Visitors to the exhibition and participants in related programs will come to a better understanding of the connections between biology and technology while learning of science and engineering's role in improving the quality of life in our society.
DATE: -
TEAM MEMBERS: Valence Davillier Andres Blake
resource project Media and Technology
The Massachusetts Linking Experiences and Pathways Follow-on (M-LEAP2) is a three-year longitudinal empirical research study that is examining prospectively how early formal and informal STEM education experiences are related to gender-based differences in STEM achievement-related choices in middle and high school. M-LEAP2 serves as a complement to - and extension of - a prior NSF-funded study, M-LEAP, which was a largely quantitative research study that followed overlapping cohorts of 3rd - 6th grade female and male students for three years. M-LEAP surveyed over 1,600 students, 627 student-parent pairs, and 134 second parents in 8 diverse public schools across Massachusetts. In contrast, M-LEAP2 is a heavily qualitative three-year study using in-depth interviews with a diverse range of 72 of these students and their families to study how formal and informal science experiences shape the students' science-related beliefs, interests, and aspirations as they progress though middle and high school.
DATE: -
TEAM MEMBERS: Goodman Research Group, Inc. Victor van den Bergh Irene Goodman Karen Gareis Danielle Smith
resource research Public Programs
This paper draws on ethnographic data to bring equity to the fore within discussions of tinkering and making. Vossoughi, Escudé, Kong & Hooper argue that equity lies in the how of teaching and learning through specific ways of: designing making environments, using pedagogical language, integrating students’ cultural and intellectual histories, and expanding the meanings and purposes of STEM learning. The authors identify and exemplify emergent equity-oriented design principles within the Tinkering After-School Program—a partnership between the Exploratorium and the Boys and Girls Clubs of San
DATE:
TEAM MEMBERS: Shirin Vossoughi Meg Escude
resource research Public Programs
The field of informal science education has embraced “making” and design activities as a powerful approach to engaging learners. This chapter by Blikstein finds that in order to create disruptive spaces where students can learn STEM, design and build inventive projects, educators . This paper provides theoretical background and concrete cases that illuminate program design and implementation issues related to making.
DATE:
TEAM MEMBERS: Molly Shea