This article describes Youth as Resources, a nationwide initiative involves youth and adults as equal partners in projects that improve community life. Some examples of the projects include the Rural Renewable Energy Alliance, which engages teenagers to install solar heating in low income homes, and the Haydenville Preservation Committee, which implemented neighborhood cleanup and landscaping projects in rural Ohio.
This article discusses competing models of afterschool programming. It points out the weaknesses of the additive model and concludes that the contextual model is advantageous in fostering STEM learning environments. It encourages cross-setting approaches in the design, development, and documentation of out-of-school activities.
This article examines afterschool science in light of the National Research Council’s comprehensive synthesis report on promoting science learning in informal environments (NRC, 2009). We present the results of our analysis of qualitative case studies of nine state-funded afterschool sites in California, discussing the strengths of these programs against the background of three key site-based constraints—time available for science, staff’s science backgrounds, and instructional materials—as well as the importance of partnerships with outside organizations to support sites in overcoming these
This article encourages afterschool programs to promote youth identification as community science experts. It uses the case study of the GET City program to frame the discussion of encouraging identity development should be an important outcome of afterschool programming.
DATE:
TEAM MEMBERS:
Angela Calabrese BartonDaniel BirminghamTakumi SatoEdna TanScott Calabrese Barton
A three-day art project in an afterschool program with no specific arts component illustrates the potential—and the challenges—of engaging children in creating art using recycled materials.
DATE:
TEAM MEMBERS:
Angela EckhoffAmy HallenbeckMindy Spearman
This document describes the Dimensions of Success (DoS), an assessment tool created by researchers at the Program in Education, Afterschool, and Resiliency (PEAR). DoS was created to help out-of-school time programs and researchers monitor and measure quality. It allows observers to collect systemic data along 12 quality indicators to pinpoint the strengths and weaknesses of afterschool science learning experiences.
DATE:
TEAM MEMBERS:
Anahit PapazianAshima ShahCaitlin Rufo-McCormick
Although stakeholders agree that afterschool STEM education can be powerful, there is less agreement on the critical question of which aspects of STEM education the afterschool field is best positioned to support. Hence, in spring 2012, the Afterschool Alliance undertook a study to ask afterschool stakeholders what aspects of STEM learning the field is best positioned to support. The aim of the Afterschool STEM Outcomes Study was to identify consensus views on appropriate and feasible outcomes and indicators for afterschool STEM programs. The study provides a realistic vision of the field’s
The article focuses on an educational program called Game Design Through Mentoring and Collaboration. The program is a partnership between McKinley Tech and George Mason University (GMU) in Fairfax, Virginia. Through this program the teachers ensure students understand the pathways needed for participation in the science, technology, engineering, and math (STEM) enterprise. Kevin Clark, is the principal investigator of the program.
At the 1939–1940 New York World's Fair, several thousand boys and girls, all members of a growing national network of high school science and engineering clubs, displayed their science fair projects and conducted live experiments to more than 10 million visitors. Housed in the building sponsored by the Westinghouse Electric and Manufacturing Company, their exhibits depicted a wide range of scientific phenomena. They also represented the conflicting values of science educators and industrialists about the societal worth of science education. In some instances, students' projects and laboratory
FUSE is a new kind of interest-driven learning experience being developed by researchers at Northwestern University with the goal of engaging pre-teens and teens in science, technology, engineering, arts/design, and mathematics (STEAM) topics while fostering the development of important 21st century skills including adaptive problem solving, creativity, self-directed learning, persistence, and grit. FUSE is now offered in-school, after-school, and on the weekends at 23 different locations in the greater Chicago area. Through FUSE, teens can "hang out, mess around and geek out" with the FUSE set of challenges, the core activities in our Studios. Each challenge uses a leveling up model from gaming and is carefully designed to engage teens in different STEAM topics and skills sets. FUSE currently has 21 challenges in areas such as robotics, electronics, biotechnology, graphic design, Android app development, 3D printing and more. New challenges are always in development. FUSE Challenges can be tackled individually or in groups. Professional scientists, engineers, advanced undergraduates, and graduate students are available as mentors and provide a real-world connection to the concepts learned and practiced through the challenges. All challenges result in digital media artifacts that are shared online for peer review, remixing, expert judging, and collaboration. We designed the FUSE program to appeal to the interests of all young people, especially those youth who are not interested in or don't think of themselves as "good at" math and science in school. FUSE challenges provide a new way to explore science, technology, engineering, arts and design, and math in a fun and relaxed way. FUSE is based on many years of research in the learning sciences by faculty in School of Education and Social Policy at Northwestern University.
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE:
-
TEAM MEMBERS:
Southwestern CollegeDavid BrownDavid Hecht
This study was designed to examine the impact of participating in an after-school robotics competition on high school students' attitudes toward science. Specifically, this study used the Test of Science-Related Attitude to measure students' social implications of science, normality of scientists, attitude toward scientific inquiry, adoption of scientific attitudes, enjoyment of science lessons, leisure interest in science, and career interest in science. Results indicated that students who participated in a robotic competition had a more positive attitude toward science and science-related