In this article, we describe a preliminary study that integrates research on engineering design activities for K-12 students with work on microworlds as learning tools. Here, we extend these bodies of research by exploring whether - and how - authentic recreations of engineering practices can help students develop conceptual understanding of physics. We focus on the design-build-test (DBT) cycle used by professional engineers in simulation-based rapid modeling. In this experiment, middle-school students worked for 10 hr during a single weekend to solve engineering design challenges using
A midpoint progress poster on the Sparks of Discovery Project which connects UW-Madison NSF researchers to produce interdisciplinary science investigations that will be/have been implemented in a number of settings, including participants from underrepresented groups in science. Wisconsin Alumni Research Foundation (WARF) along with the Morgridge Institute for Research staff support the project and implement the education programs at the Wisconsin Institutes for Discovery. This poster was presented at the 2014 AISL PI Meeting in Washington, DC.
DATE:
TEAM MEMBERS:
University of Wisconsin, MadisonTravis Tangen
This CRPA award addresses the issue of multidisciplinary science and the public's awareness of the ideas. The PIs believe that the prevalence of multidisciplinary science is high and growing fast. Thus, the public and particularly the younger generations need to understand these concepts and to begin thinking in those terms. Thus, they will derive hands-on modules for three age groups that are age appropriate. The project team includes 7 NSF funded researchers who do multidiscipline-based research in biology, mathematics and engineering. These modules will be tested at the Boy and Girls Club of Dane County prior to being exhibited at the Madison Children's Museum and the Aldo Leopold Nature Center. Further, the local PBS TV station (WPT) will air some of the demonstrations giving the project more visibility and impact. Each set of modules designed for the three age groups shall be evaluated separately using age specific goals and objectives. The project is a collaboration between 7 scientists and engineers, the Boys and Girls Club of Dane County, the Aldo Leopold Nature Center, the Madison Children's Museum, and the Wisconsin Institutes of Discovery of the University of Wisconsin.
This poster provides an overview, program goals, evaluation plan, and research questions for the AISL project, Techbridge Broad Implementation: An Innovative Model to Inspire Girls in STEM Careers. The poster was presented at the 2014 AISL PI Meeting.
In recent years, many technological interventions have surfaced, such as virtual worlds, games, and digital labs, that aspire to link young people's interest in media technology and social networks to learning about science, technology, engineering, and math (STEM) areas. Despite the tremendous interest surrounding young people and STEM education, the role of school libraries in these initiatives is rarely examined. In this article, we outline a sociocultural approach to explore how school library programs can play a critical role in STEM education and articulate the need for research that
DATE:
TEAM MEMBERS:
Mega SubramaniamJune AhnKenneth FleischmannAllison Druin
There is a movement afoot to turn the acronym STEM—which stands for science, technology, engineering, and mathematics—into STEAM by adding the arts. Science educators have finally begun to realize that the skills required by innovative STEM professionals include arts and crafts thinking. Visual thinking; recognizing and forming patterns; modeling; getting a "feel" for systems; and the manipulative skills learned by using tools, pens, and brushes are all demonstrably valuable for developing STEM abilities. And the National Science Foundation and the National Endowment for the Arts have gotten
The purpose of this paper is to present a conceptual framework for initiatives focused on supporting learning across settings in the domains of science, technology, engineering, and mathematics (STEM). The conceptual framework emerges from ecological perspectives on learning that suggest a need to consider how learning develops across settings, through a range of supportive interactions and relationships (Barron, 2006; Bronfenbrenner, 1979). The framework presents initial design principles for organizing learning opportunities that connect people to practices in multiple settings. It also
The article discusses the Science, Technology, Engineering and Mathematics: Information, Technology and Scientific Literacy (STEM-ALL) for ALl Learners project of Emporia State University, Kansas. The project is an interdisciplinary program for teaching information, technology and scientific-literacy that brings STEM content into Master of Library Science curriculum. It aims to create an Information, Technology and Scientific Literacy Certificate for educators to earn across degree programs.
The article presents the makerspaces in libraries where informal, collaborative learning can occur through hands-on creation using any combination of technology, industrial arts and fine arts not readily available for home use. It cites the underlying goal of a makerspace to encourage innovation and creativity via the use of technology and offer a place where everything can be nurtured. It notes a growing interest in design thinking afforded by makerspaces.
Educational makerspaces (EM) and maker education (ME) have the potential to revolutionize the way we approach teaching and learning. The maker movement in education is built upon the foundation of constructionism, which is the philosophy of hands-on learning through building things. Constructionism, in turn, is the application of constructivist learning principles to a hands-on learning environment. Thus maker education is a branch of constructivist philosophy that views learning as a highly personal endeavor requiring the student, rather than the teacher, to initiate the learning process. In
DATE:
TEAM MEMBERS:
R. Steven KurtiDebby KurtiLaura Fleming
In 2007, Carnegie Corporation of New York joined with the Institute for Advanced Study to create a commission, comprised of some of our nation’s most distinguished mathematicians, scientists, educators, scholars, business leaders, and public officials, to assess not only the current state of math and science education in the U.S. but also how to enhance the capacity of our schools and universities to generate innovative strategies across all fields that will increase access to high-quality education for every student in every classroom.
DATE:
TEAM MEMBERS:
Carnegie Corporation and the Institute for Advanced Study