The National Center for Earth-surface Dynamics (NCED) is a Science and Technology Center focused on understanding the processes that shape the Earth's surface, and on communicating that understanding with a broad range of stakeholders. NCED's work will support a larger, community-based effort to develop a suite of quantitative models of the Earth's surface: a Community Sediment Model (CSM). Results of the NCED-CSM collaboration will be used for both short-term prediction of surface response to natural and anthropogenic change and long-term interpretation of how past conditions are recorded in landscapes and sedimentary strata. This will in turn help solve pressing societal problems such as estimation and mitigation of landscape-related risk; responsible management of landscape resources including forests, agricultural, and recreational areas; forecasting landscape response to possible climatic and other changes; and wise development of resources like groundwater and hydrocarbons that are hosted in buried sediments. NCED education and knowledge transfer programs include exhibits and educational programs at the Science Museum of Minnesota, internships and programs for students from tribal colleges and other underrepresented populations, and research opportunities for participants from outside core NCED institutions. The Earth's surface is the dynamic interface among the lithosphere, hydrosphere, biosphere, and atmosphere. It is intimately interwoven with the life that inhabits it. Surface processes span environments ranging from high mountains to the deep ocean and time scales from fractions of a second to millions of years. Because of this range in forms, processes, and scales, the study of surface dynamics has involved many disciplines and approaches. A major goal of NCED is to foster the development of a unified, quantitative science of Earth-surface dynamics that combines efforts in geomorphology, civil engineering, biology, sedimentary geology, oceanography, and geophysics. Our research program has four major themes: (1) landscape evolution, (2) basin evolution, (3) biological sediment dynamics, and (4) integration of morphodynamic processes across environments and scales. Each theme area provides opportunities for exchange of information and ideas with a wide range of stakeholders, including teachers and learners at all levels; researchers, managers, and policy makers in both the commercial and public sectors; and the general public.
DATE:
-
TEAM MEMBERS:
Efi Foufoula-GeorgiouChristopher PaolaGary Parker
The intent of this project is to use social network methods to study networks of afterschool and informal science stakeholders. It would attempt to create knowledge that improves afterschool programs access to informal science learning materials. This is an applied research study that applies research methods to improving access to and enactment of informal science education programs across a range of settings. The investigators plan to collect data from 600 community- and afterschool programs in California, conduct case studies of 10 of these programs, and conduct surveys of supporting intermediary organizations. The analysis of the data will provide descriptions of the duration, intensity, and nature of the networks among afterschool programs and intermediary agencies, and the diffusion patterns of science learning materials in afterschool programs. The project will yield actionable knowledge that will be disseminated among afterschool programs, intermediary organizations, funding agencies, and policymakers to improve the dissemination and support of afterschool science learning opportunities. The project is focused on free-choice settings where every day the largest numbers of children attend afterschool programs at schools and in other community settings. It seeks information about what conditions are necessary for informal science programs to significantly impact the largest possible number of children in these settings.
DATE:
-
TEAM MEMBERS:
Barbara MeansAnn HouseCarlin LlorenteRaymond McGhee
The project DIG: Scientists in Alaska's Scenery will perform proof-of-concept on integrating a tourist's visit with place-based stories of meaningful science research in the Arctic. DIG (Digitally Integrated Guide) will widen the general public's interaction with the cultural and natural environment by allowing them to access Web sites and load their handheld mobile devices with engaging descriptions of research. Access can occur before, during, or after their visit - even if the visit takes them far from computers, electricity and the Internet. The creation of user-friendly access to technology and to scientists' stories will provide a new information tool for the public. For these tourists, or others interested in research in Alaska, opportunities to learn directly from the scientists themselves are almost non-existent. Moreover, tourists have no capability to link such research with places they visit. DIG's place-based outreach will be delivered using standard media (broadcast TV, publications) and social media (Web, facebook, twitter, etc.) and mobile devices. DIG demonstration project will join scientists, Alaska Native peoples, tourists, media makers, interpreters and technology experts in inquiry-based learning designed to maximize engagement by the general public. The radically different approach to Arctic-focused science documentary proposed here fosters the close collaboration of the scientist and media maker. Video podcasts (vodcasts) and supporting Web-based materials will be created for three current research projects in Alaska, with a focus on NSF-funded projects. Such projects include anthropology and cultural/linguistic study, paleontology, climate change research, biology, and other areas. Delivery and evaluation will emphasize tourists who visit, or are planning to visit, the National Parks of Alaska. These tourists are accessible to the research team, and they are motivated to seek out information about the places they are visiting. If successful, our approach to science education and outreach will augment their knowledge about research in Alaska, resulting in a deeper and more informed experience.
DATE:
-
TEAM MEMBERS:
Gregory NewbyLiz O'ConnellDeborah Perry
Front-end and formative evaluation of the Science Museum of Minnesota's Invention, Design, Engineering, and Art (IDEA) Cooperative youth development program was carried out from June 2008 - May 2009. The front-end and formative evaluation activities were guided by four overarching questions. 1. To what extent are youth able to apply IT and engineering process skills to design challenges? Can they come up with multiple solutions to challenges? Are they persistent problem solvers? 2. To what extent does the program provide youth with the necessary resources to help youth prepare for both
DATE:
TEAM MEMBERS:
Amy Grack NelsonMelissa FitzenbergerKathleen MillerClaire Phillippe
All youth in the Science Museum of Minnesota's Kitty Andersen Youth Science Center (KAYSC) are invited to complete a web-based exit survey upon leaving their current team. The survey is the same across all KAYSC teams, with the addition of some questions specific to a team experience and outcomes. This report includes select data from the exit surveys for the Invention, Design, Engineering, and Art (IDEA) Cooperative high school team, called the Invention Crew. The purpose of the exit surveys were to understand youth's overall experience on the IDEA Coop as well as the impact of the IDEA Coop
All youth in the Science Museum of Minnesota's Kitty Andersen Youth Science Center (KAYSC) are invited to complete a web-based exit survey upon leaving their current team. The survey is the same across all KAYSC teams, with the addition of some questions specific to a teamâs experience and outcomes. This report includes select data from the exit surveys for the Invention, Design, Engineering, and Art (IDEA) Cooperative middle school team, called the Design Team. The purpose of the exit surveys were to understand youth's overall experience on the IDEA Coop as well as the impact of the IDEA
The goal of the SISCOM program is to improve science achievement of economically disadvantaged middle school students in science, through the development, implementation, and dissemination of a replicable, model program for use with underserved youth, especially girls, in informal educational settings. A number of programs and interventions geared toward bolstering the STEM interest and achievement of urban youth have been implemented across the country. Key elements that have proven to be successful have been incorporated into the SISCOM program include the longevity of intervention
DATE:
TEAM MEMBERS:
Penny L. Hammrich, Ph.D.Kathy Fadigan, Ed.D.Judy Stull, Ph.D.
Goodman Research Group, Inc. (GRG) conducted a comprehensive multi-method external evaluation of the Design Squad PBS television series and its outreach initiative. Design Squad is a live-action reality television series for 9-12 years-olds that aims to provide hands-on experiences and positive images of engineering through design competitions. The broad evaluation goals were to: 1) assess the extent to which children's knowledge, interest, and awareness of engineering increased as a result of watching the Design Squad series, 2) document the implementation of the community events resulting
This report describes a summative evaluation of Secrets of Circles, a 2,600 square foot exhibition created by Children's Discovery Museum of San Jose and funded by the National Science Foundation. The exhibition and related programs were designed to highlight the uses of circles and wheels in everyday life. Circles have properties that make them extremely effective as an engineering tool, and they are ubiquitous in cultures around the world. The appendix of this report inclues interview and observation protocols and questionnaires used in this study.
DATE:
TEAM MEMBERS:
Sue AllenChildren's Discovery Museum of San Jose
Too Small to See is a 5,000 square-foot interactive traveling museum exhibition designed to provide hands-on nanotechnology science education to youth age 8 to 13 and adults. It debuted at Disney's Epcot and will reach over three million people during a five-year US tour. This evaluation examines the exhibition’s outcomes and impact on increasing visitors’ awareness of, interest in, engagement with, and understanding of nanoscale science, engineering, and technology. An overarching goal is to document the project’s contribution to the portfolio of federally funded Science Technology
DATE:
TEAM MEMBERS:
Douglas SpencerTina PhillipsTori AngelottiShane MurphyFred ConnerCornell University
In MIT’s NSF-funded Terrascope Youth Radio (TYR) program, urban youth, many from groups historically underrepresented in the sciences, worked as paid interns who received training in radio production, reporting and writing stories with scientific content and audio storytelling to create environmentally oriented audio pieces that were engaging and relevant to their own and their peers’ lives. Teen interns participated between July 2008 and Autumn 2012. TYR’s goals were to improve a broad audience of teens’ engagement with, knowledge of, and attitudes about science, technology, engineering, and