There is a movement afoot to turn the acronym STEM—which stands for science, technology, engineering, and mathematics—into STEAM by adding the arts. Science educators have finally begun to realize that the skills required by innovative STEM professionals include arts and crafts thinking. Visual thinking; recognizing and forming patterns; modeling; getting a "feel" for systems; and the manipulative skills learned by using tools, pens, and brushes are all demonstrably valuable for developing STEM abilities. And the National Science Foundation and the National Endowment for the Arts have gotten
The purpose of this paper is to present a conceptual framework for initiatives focused on supporting learning across settings in the domains of science, technology, engineering, and mathematics (STEM). The conceptual framework emerges from ecological perspectives on learning that suggest a need to consider how learning develops across settings, through a range of supportive interactions and relationships (Barron, 2006; Bronfenbrenner, 1979). The framework presents initial design principles for organizing learning opportunities that connect people to practices in multiple settings. It also
In 2007, Carnegie Corporation of New York joined with the Institute for Advanced Study to create a commission, comprised of some of our nation’s most distinguished mathematicians, scientists, educators, scholars, business leaders, and public officials, to assess not only the current state of math and science education in the U.S. but also how to enhance the capacity of our schools and universities to generate innovative strategies across all fields that will increase access to high-quality education for every student in every classroom.
DATE:
TEAM MEMBERS:
Carnegie Corporation and the Institute for Advanced Study
Afterschool programs that provide strong STEM learning experiences are making an impact on participating youth not only become excited and engaged in these fields but develop STEM skills and proficiencies, come to value these fields and their contributions to society, and -- significantly -- begin to see themselves as potential contributors to the STEM enterprise. This paper summarizes evaluation data from a selection of strong afterschool STEM programs, providing a snapshot of the types of substantive impacts afterschool programs are having on youth.
The Coalition for Science After School was launched January 28, 2004 at the Santa Fe Institute, home to the world’s leading researchers on the study of complexity. Against the dazzling backdrop of the New Mexican mesa, 40 educational leaders from diverse but overlapping domains—science, technology, engineering and mathematics education and after-school programs—met to grapple with three emerging, important trends in youth development and science learning in this country: 1. An explosion in the number of U.S. youth attending after-school programs, and increasing links between school and after
DATE:
TEAM MEMBERS:
The Coalition for Science After SchoolLeah Reisman
This paper describes the integration of handheld computer technology into an existing web-based educational platform, the Web-based Inquiry Science Environment (WISE) and the synergy it produces. This solution facilitated a research program that explores how handheld computers (PDAs, palmtops, etc.) can expand the scope and functionality of inquiry activities in K-12 science and mathematics curriculum. The paper presents the WISE software and curriculum and explains how combining it with handheld technology creates unique educational opportunities. It then goes on to describe the system that
From March 26-28, 2014, the Coalition for Science After School (CSAS) hosted its final summit, Passing the Torch: Advancing Opportunity for Quality Science Learning. The Summit was intended to: (1) celebrate a decade of progress in strengthening and expanding STEM learning opportunities in out-of-school time; (2) call attention to critical issues in ensuring that all young people have opportunities for quality STEM experiences in their local communities; and (3) stimulate ideas, strategies, partnerships and commitments to continue to increase opportunities for quality STEM experiences across
DATE:
TEAM MEMBERS:
The Coalition for Science After SchoolLeah Reisman
This action plan lays out a structure that will allow stakeholders from local, State, and Federal governments, as well as nongovernmental STEM education stakeholder groups, to work together to coordinate and enhance the Nation's ability to produce a numerate and scientifically and technologically literate society and to increase and improve the current STEM education workforce. Strategies for producing the next generation of innovators are not explicitly addressed in this action plan and will require subsequent study. A coherent system of STEM education is essential to the Nation's economy and
This paper lays out a theory of (re-)generative learning to explain how families and communities socialize young learners into thinking like scientists and mathematicians. Cultural communities and their families orient their young in varied ways toward the language, behaviors, and self-theories about the future presupposed in the learning of science and mathematics. Certain socialization processes and norms correspond closely with those that scientists and artists use in laboratories, studios, and rehearsals. Certain norms of politeness and patterns of language differ significantly from habits
Grounded in the informal science education experiences of our partners around the country, Every Hour Counts developed this resource guide to profile promising strategies to advance informal STEM learning. The guide features: (1) Core elements of the national Frontiers in Urban Science Exploration (FUSE) strategy. (2) Overview of the The After-School Corporation's FUSE strategy and lessons learned in working to bring ISE to scale. (3) Profiles of city and county-wide initiatives, through the lens of a few key strategies to build after-school systems: advocacy, brokering relationships, building
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers
DATE:
TEAM MEMBERS:
National Research CouncilMargaret HoneyGreg PearsonHeidi Schweingruber