Sense-making with data through the process of visualization—recognizing and constructing meaning with these data—has been of interest to learning researchers for many years. Results of a variety of data visualization projects in museums and science centers suggest that visitors have a rudimentary understanding of and ability to interpret the data that appear in even simple data visualizations. This project supports the need for data visualization experiences to be appealing, accommodate short and long-term exploration, and address a range of visitors’ prior knowledge. Front-end evaluation
As the world is increasingly dependent upon computing and computational processes associated with data analysis, it is essential to gain a better understanding of the visualization technologies that are used to make meaning of massive scientific data. It is also essential that the infrastructure, the very means by which technologies are developed for improving the public's engagement in science itself, be better understood. Thus, this AISL Innovations in Development project will address the critical need for the public to learn how to interpret and understand highly complex and visualized scientific data. The project will design, develop and study a new technology platform, xMacroscope, as a learning tool that will allow visitors at the Science Museum of Minnesota and the Center of Science and Industry, to create, view, understand, and interact with different data sets using diverse visualization types. The xMacroscope will support rapid research prototyping of public experiences at selected exhibits, such as collecting data on a runner's speed and height and the visualized representation of such data. The xMacroscope will provide research opportunities for exhibit designers, education researchers, and learning scientists to study diverse audiences at science centers in order to understand how learning about data through the xMacroscope tool may inform definitions of data literacy. The research will advance the state of the art in visualization technology, which will have broad implications for teaching and learning of scientific data in both informal and formal learning environments. The project will lead to better understanding by science centers on how to present data to the public more effectively through visualizations that are based upon massive amounts of data. Technology results and research findings will be disseminated broadly through professional publications and presentations at science, education, and technology conferences. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project is driven by the assumption that in the digital information age, being able to create and interpret data visualizations is an important literacy for the public. The research will seek to define, measure, and advance data visualization literacy. The project will engage the public in using the xMacrocope at the Science Museum of Minnesota and at the Center of Science and Industry's (COSI) science museum and research center in Columbus, Ohio. In both museum settings the public will interact with different datasets and diverse types of visualizations. Using the xMacroscope platform, personal attributes and capabilities will be measured and personalized data visualizations will be constructed. Existing theories of learning (constructivist and constructionist) will be extended to capture the learning and use of data visualization literacy. In addition, the project team will conduct a meta-review related to different types of literacy and will produce a definition with performance measures to assess data visualization literacy - currently broadly defined in the project as the ability to read, understand, and create data visualizations. The research has potential for significant impact in the field of science and technology education and education research on visual learning. It will further our understanding of the nature of data visualization literacy learning and define opportunities for visualizing data in ways that are both personally and culturally meaningful. The project expects to advance the understanding of the role of personalization in the learning process using iterative design-based research methodologies to advance both theory and practice in informal learning settings. An iterative design process will be applied for addressing the research questions by correlating visualizations to individual actions and contributions, exploring meaning-making studies of visualization construction, and testing the xMacroscope under various conditions of crowdedness and busyness in a museum context. The evaluation plan is based upon a logic model and the evaluation will iteratively inform the direction, process, and productivity of the project.
Assuming that scientific development and artistic research are genetically similar, this article shows the common need of knowledge of art and science, their dialectical and multidirectional relations and the unstable boundaries between them. The fractal art has assimilated the cognitive and perceptive changes in the realm of non-euclidean geometries and has become a precise instrument of "epistemological observation". Artistic practices materialize and communicate the laws of science, while scientific revolutions are in actual facts metaphorical revolutions.
The Exploratorium explainer program is not only important to the young people involved, but is an integral part of the museum culture. This initiative that started to help the youth of our community has blossomed into a program that has been very helpful to the science centre. In fact, the institution would not be complete without the fresh energy of the explainers. They help the Exploratorium to continue to give the real pear to its public.
This multiplatform media and science center project is designed to engage audiences in humanity's deepest questions like the nature of love, reality, time and death in both scientific and humanistic terms. Project deliverables include 5 hour-long radio programs for broadcast on NPR stations, public events/museum exhibits at the Exploratorium in San Francisco, kiosks in venues throughout the city, and a social media engagement campaign. The audience of the project is large and diverse using mass media and the internet. But the project will specifically target young, online, and minority audiences using various strategies. The project is designed to help a diverse audience understand the impact of new scientific developments as well as the basic science, technology, engineering and math needed to be responsible, informed citizens. Innovative elements of the project include the unique format of the radio programs that explore complex topics in an engaging and compelling way, the visitor engagement strategy at the Exploratorium, and the social media strategy that reaches niche audiences who might never listen to the radio broadcasts, but find the podcasts and blogs engaging. The Exploratorium will be opening a new building in 2013 and will include exhibits and programs that are testing grounds for this project. This is a new model that aligns the radio content with exhibitions, social media, and in person events at the Exploratorium, providing a unique holistic approach. The project is designed to inspire people to think and talk about science and want to find out more. The evaluation will measure the impacts on the targeted audiences reached by each of the key delivery methods. Data will be collected using focus groups; intercept interviews with people in public places, and longitudinal panels. The focus will be on 5 targeted audiences (young adults, families with children, non-NPR listeners, underrepresented minorities, and adults without college experience). This comprehensive evaluation will likely contribute important knowledge to the field based on this multiple-platform collaborative model.
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California.
Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California. Project partners include the Rueben H. Fleet Science Center and the University of California, San Diego (UCSD). The project's goals are to support teachers in the development of informal science education opportunities for English learners, partner with students in grades 7-12 to create activities and exhibits, deliver student-produced products to community members, and sustain and disseminate the activities through the development of web-based teacher tools. The teachers will work with informal science education experts, STEM professionals, and undergraduate students to develop and implement the program lessons with their 7-12 grade students. The activities and exhibits designed for community audiences will be used in the Imperial Valley Discovery Zone, slated for completion in fall 2013. Special emphasis will be placed on understanding English scientific word frames and science content specific vocabulary to help ELL students express complex scientific concepts in English. The project deliverables in this pilot project include a comprehensive teacher professional development strategy, student-developed informal science activities and exhibits, a project website, and multiple teacher resources (lesson plans, how-to guides, training materials, and social networking tools). Teachers will receive 45 hours of professional development during the summer with an additional 20 hours of support provided during the school year. UCSD's Jacob's School of Engineering will provide training on solar energy micro-grids using a micro-grid observatory to be located in Imperial Valley. English language development training will be provided by the University of California's Professional Development Institute (UCPDI) and address the role of language objectives in scientific conceptual knowledge and language development; using science and language to improve classroom questioning/discussion; and teaching academic language to English learners. The informal science education component of the training provided by the Fleet Science Center will address topics such as questioning strategies, scientific reasoning frameworks, communicating science to public audiences, and learning "high level" science content using hands-on approaches. The project design builds on research which supports an active learning approach that mirrors scientific practice and is one of the strengths of informal science learning environments. The question to be addressed by the USA Project is: "Can informal STEM activities with embedded English Language development strategies assist English learner students to increase their English language competency and their interest in STEM subjects?" The PI seeks to identify the impact that teachers have on guiding students in inquiry-based informal STEM education, evaluate the academic outcomes for students, and measure changes in community interest, understanding, and attitudes towards STEM and STEM occupations. The USA Project is designed to reach approximately 200 underserved students and will promote the participation of at least 400 additional students, parents, and other rural community members. It is anticipated that this project will result in the development of a model for teacher-led informal STEM education, increased STEM learning opportunities for the community, and the development of a network of educational institutions that helps to bridge formal and informal STEM learning and learning environments.
There is a recognized need to rigorously examine the efficacy of approaches to supporting informal learning. In this study, we used a 2 × 2 factorial experimental design to test the impact of a computer guide on 3 proximal measures of visitor learning at an interactive math exhibit. In total, 128 families were systematically assigned to engage with the exhibit either with or without access to a supplementary computer kiosk. Visitor groups with access to the computer spent longer, on average, at the exhibit and engaged in more mathematical behaviors compared to other groups. However, based on
DATE:
TEAM MEMBERS:
Oregon Museum of Science and IndustryScott PattisonScott EwingAngela Frey
The summative evaluation of the National Science Foundation (NSF)-funded Geometry Playground traveling exhibition was a two-year naturalistic study to examine (a) the ways and extent to which the exhibition promoted the practice of spatial reasoning skills, and appreciation for geometry, and (b) its influence on museum professionals' thinking across three venues: the Exploratorium (San Francisco, CA), the Science Museum of Minnesota (St. Paul, MN), and the Don Harrington Discovery Center (Amarillo, TX). The study took place from December 2009 through November 2011 and included five site visits
Partnering with National Musical Arts, the Science Museum of Minnesota seeks to develop BioMusic, a 4,000 sq. ft. traveling exhibition that explores the origins of music in nature and the connections between music and sound of living things. This project is based on planning grant ESI-0211611 (The Music of Nature and the Nature of Music) awarded to NMA. The project is based on the emerging interdisciplinary research field of biomusic, which includes musicology plus aspects of neuroscience, biology, zoology, environmental science, physics, psychology, math and anthropology. The exhibit sections -- "Humanimal" Music; Natural Symphonies; Ancient Roots; Music, Body and Mind; and World of Music -- use both music and natural sound to explore biodiversity, cultural diversity, the physics of sound and the brain. BROADER IMPACT: The exhibition is expected to travel for at least six years, reaching some two million people in 18 communities. It is to be accompanied by a six-part radio series (Sweet Bird Classics) for young children. Because of the connection to music and many other areas of public interest, this exhibition has the potential to attract and engage new audiences to science museums and stimulate their interest in STEM.
The University of Southern California's Institute for Creative Technologies and the Museum of Science, Boston will create life-sized, 3-D Virtual Humans that will interact with visitors as interpretive guides and learning facilitators at science exhibits. Through the use of advanced artificial intelligence and intelligent tutoring techniques, Virtual Humans will provide a highly responsive functionality in their dialogue interpretation that will generate sophisticated interaction with visitors about the STEM content related to the exhibit. The project exemplifies how the confluence of science, technology, engineering, mathematics and education can creatively and collaboratively advance new tools and learning processes. The Virtual Human project will begin to present to the visitor a compelling, real life, interactive example of the future and of the related convergence of various interdisciplinary trends in technology, such as natural language voice recognition, mixed reality environments, para-holographic display, visitor recognition and prior activity recall, artificial intelligence, and other interdisciplinary trends. The 3-D, life-sized Virtual Humans will serve as museum educators in four capacities: 1) as a natural language dialogue-based interactive guide that can suggest exhibits to explore in specific galleries and answer questions about particular STEM content areas, such as computer science; 2) as a coach to help visitors understand and use particular interactive exhibits; 3) be the core focus of the Science behind the Virtual Humans exhibit; and 4) serve as an ongoing research effort to improve human and virtual human interactions at increasingly sophisticated levels of complexity. The deliverables will be designed to build upon visitor experiences and stimulate inquiry. A living lab enables visitors to become part of the research and development process. The project website will introduce visitors to the technologies used to build virtual humans and the research behind their implementation. The site will be augmented with videos and simulations and will generate user created content on virtual human characters. Project evaluation and research will collect language and behavioral data from visitors to inform the improvement of the virtual guide throughout the duration of the grant and to develop a database that directly supports other intelligent systems, and new interface design and development that will have broad impact across multiple fields.
DATE:
-
TEAM MEMBERS:
William SwartoutDavid TraumJacquelyn MorieDiane PiepolH. Chad Lane
The Education Development Center, Incorporated, requests $2,081,018 to create informal learning opportunities in science, mathematics, engineering and technology utilizing the study of the ancient African civilization of Nubia as context. Educational activities and resources will be developed based on the extensive ongoing archeological research on historical Nubia. The two main components of the project are a traveling exhibit with related educational materials and a website that will provide the target audience an opportunity to access extensive on-line resources and activities. The project will provide community outreach and professional development for educators in museums, community groups, schools and libraries. The project is designed for thirty-six months' duration. In year one, a network of collaborators in the Boston area will focus on research and development; in year two, project materials will be piloted and evaluated in six cities, and on-line professional development programs will be conducted; and in year three, project materials will be disseminated directly to 60 sites and more broadly via the internet.