The National Girls Collaborative Project (NGCP) seeks to maximize access to shared resources within projects and with public and private sector organizations and institutions interested in expanding girls’ participation in science, technology, engineering, and mathematics (STEM). Funded primarily by the National Science Foundation, the NGCP is a robust national network of more than 3,000 girl-serving STEM organizations. Currently, 31 Collaboratives, serving 40 states, facilitate collaboration between more than 12,800 organizations who serve more than 7.7 million girls and 4.4 million boys. The NGCP occupies a unique role in the STEM community because it facilitates collaboration with all stakeholders who benefit from increasing diversity and engagement of women in STEM. These stakeholders form Regional Collaboratives, who are connected to local girl-serving STEM programs. Regional Collaboratives are led by leadership teams and advisory boards with representatives from K-12 education, higher education, community-based organizations, professional organizations, and industry. NGCP strengthens the capacity of girl-serving STEM projects by facilitating collaboration among programs and organizations and by sharing promising practice research, program models, and products through webinars, collaboration training, and institutes. This is accomplished through a tested comprehensive program of change that uses collaboration to expand and strengthen STEM-related opportunities for girls and women. In each replication state, the NGCP model creates a network of professionals, researchers, and practitioners, facilitating collaboration within this network, and delivering high-quality research-based professional development. Participating programs can also receive mini-grant funding to develop collaborative STEM-focused projects. To date, over 27,000 participants have been served in 241 mini-grant projects, and over 17,000 practitioners have been served through in-person events and webinars. The NGCP’s collaborative model changes the way practitioners and educators work to advance girls’ participation in STEM. It facilitates the development of practitioners in their knowledge of good gender equitable educational practices, awareness of the role of K-12 education in STEM workforce development, and mutual support of peers locally and across the United States.
The Girls RISEnet project convened an international community to explore the role of science centers in issues of gender equity in STEM learning. This effort resulted in two major products, including this international literature review that synthesizes what is known about how science centers and museums contribute to girls' engagement with STEM, summarizes what is useful for practice, and identifies gaps in the research. In addition, an international survey identified common global themes and issues and began to outline opportunities for science centers and museums to advance gender equity.
This report is the result of a project to investigate through a sociocultural lens whether girls-only, informal STEM experiences have potential long-term influences on young women's lives, both in terms of STEM but also more generally. The authors documented young women's perceptions of their program experiences and the ways in which they influenced their future choices in education, careers, leisure pursuits, and ways of thinking about what science is and who does it. This report includes the questionnaire used in the study.
This is the summative evaluation of Statistics for Action (SfA). The mixed-methods evaluation included both process (project implementation) and impact (project effectiveness) assessments. It was posited a cascade-like impact of SfA, in which new materials would be developed by TERC staff; a host of environmental organizations would be trained to utilize them with grass roots community groups; and these groups would then incorporate SfA into their ongoing environmental campaigns. Ultimately, it was theorized, the public messaging around environmental issues would be strengthened by SfA’s
DATE:
TEAM MEMBERS:
Arbor Consulting PartnersMargaret ConnorsMindy FriedMadeleine Taylor
The article describes the purpose of the evaluation for Statistics for Action (SfA): to learn to what extent SfA's set of materials and resources and training developed by math educators with input from environmental organizers, could increase numeracy among environmental organizers and the community members they serve. For this generally unpopular content (math) in an unusual context (environmental campaigns), the author describes project and evaluation design choices that worked, and those that didn’t.
This article discusses a 1988-1990 study that analyzed the effectiveness of a collaborative effort between a museum and a school system to build an integrated curriculum package. The partners included the York County School System (VA) and the Yorktown Victory Center (operated by the Jamestown-Yorktown Foundation). The theme of the curriculum was 18th Century Medicine and the unit was designed to enhance the science, math, and social studies instruction of fourth graders.
DATE:
TEAM MEMBERS:
Ronald GieseJudy Davis-DorseyJoseph Gutierrez
The Learning and Youth Research and Evaluation Center (LYREC) is a collaboration of the Exploratorium, Harvard University, Kings College London, SRI International and UC Santa Cruz. LYREC provides technical assistance to NSF AYS projects, collects and synthesizes their impact data, and oversees dissemination of progress and results. This center builds on the Center for Informal Learning in Schools (CILS) that has developed a theoretical approach that takes into account the particular strengths and affordances of both Out of School Teaching (OST) and school environments. This foundation will permit strengthening the potential of the NSF AYS projects to develop strong local models that can generate valid and reliable data that can guide future investment, design and research aimed at creating coherence across OST and school settings. The overarching questions for the work are: 1. How can OST programs support K-8 engagement and learning in science, and in particular how can they contribute to student engagement with K-8 school science and beyond? 2. What is the range of science learning outcomes OST programs can promote, particularly when in collaboration with schools, IHE's, businesses, and other community partners? 3. How can classroom teachers and schools build on children's OST experiences to strengthen children's participation and achievement in K-12 school science Additionally, the data analysis will reveal: 1. How OST programs may be positioned to support, in particular, high-poverty, female and/or minority children traditionally excluded from STEM academic and career paths; and 2. The structural/organizational challenges and constraints that exist to complicate or confound efforts to provide OST experiences that support school science engagement, and conversely, the new possibilities which are created by collaboration across organizational fields. Data will be gathered from surveys, interviews, focus groups, evaluation reports, and classroom and school data.
Children feed alphabet letters to a talking baby dragon, drive a New York City fire truck, paint on a six-foot art wall, and crawl through a challenge course in PlayWorks™ at the Children's Museum of Manhattan (CMOM) in New York. Manhattan’s largest public play and learning center for early childhood marries the skills that children need to succeed in kindergarten with fun stuff that kids love. The Institute of Museum and Library Services (IMLS) funded the project through a 2006 Museums for America grant to support the museum as a center of community engagement and lifelong learning. “PlayWorks™ is a joyful place for learning science, math, reading and other things. We incorporate fun and learning into the whole design to create a scaffold of learning. Families come to the museum to supplement preschool experiences,” said Andy S. Ackerman, CMOM’s executive director. The museum also offers parents, sitters, and other care-providers guidance on engaging their children with the exhibit. Based on the concept that children’s learning and personal growth is rooted in play, the 4,000-square-foot space is divided into five learning areas: Language, Math and Physics, Arts and Science, Imagination and Dramatic Play, and Practice Play (for infants and crawlers).
Evaluators sought to determine impact on math attitude and content knowledge of students (3rd - 6th grade), and math literacy workers (high school and college students), based on pre-post testing and observation of YPP after school programs, in which college and high school students teach math games to elementary and middle school students in marginalized and vulnerable communities. The study focused on the Chicago YPP site, 1 of 7 in the YPP national network. Increases in math attitude scores were not statistically significant, however in some instances evaluators found significant increases
DATE:
TEAM MEMBERS:
Norman LedermanYoung People's Project, Inc.
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE:
-
TEAM MEMBERS:
Tandy WarnowDavid HillisLauren MeyersDaniel MirankerWarren Hunt, Jr.
The intent of this project is to use social network methods to study networks of afterschool and informal science stakeholders. It would attempt to create knowledge that improves afterschool programs access to informal science learning materials. This is an applied research study that applies research methods to improving access to and enactment of informal science education programs across a range of settings. The investigators plan to collect data from 600 community- and afterschool programs in California, conduct case studies of 10 of these programs, and conduct surveys of supporting intermediary organizations. The analysis of the data will provide descriptions of the duration, intensity, and nature of the networks among afterschool programs and intermediary agencies, and the diffusion patterns of science learning materials in afterschool programs. The project will yield actionable knowledge that will be disseminated among afterschool programs, intermediary organizations, funding agencies, and policymakers to improve the dissemination and support of afterschool science learning opportunities. The project is focused on free-choice settings where every day the largest numbers of children attend afterschool programs at schools and in other community settings. It seeks information about what conditions are necessary for informal science programs to significantly impact the largest possible number of children in these settings.
DATE:
-
TEAM MEMBERS:
Barbara MeansAnn HouseCarlin LlorenteRaymond McGhee
The goal of the SISCOM program is to improve science achievement of economically disadvantaged middle school students in science, through the development, implementation, and dissemination of a replicable, model program for use with underserved youth, especially girls, in informal educational settings. A number of programs and interventions geared toward bolstering the STEM interest and achievement of urban youth have been implemented across the country. Key elements that have proven to be successful have been incorporated into the SISCOM program include the longevity of intervention
DATE:
TEAM MEMBERS:
Penny L. Hammrich, Ph.D.Kathy Fadigan, Ed.D.Judy Stull, Ph.D.