This planning grant is designed to engage urban and rural families in science learning while piloting curriculum development and implementation that incorporates both Native and Western epistemologies. Physical, earth, and space science content is juxtaposed with indigenous culture, stories, language and epistemology in after-school programs and teacher training. Project partners include the Dakota Science Center, Fort Berthold Community College, and Sitting Bull College. The Native American tribes represented in this initiative involve partnerships between the Dakota, Lakota, Nakota, Hidatsa, Mandan, and Arikara. The primary project deliverables include a culturally responsive Beyond Earth Moon Module, teacher training workshops, and a project website. The curriculum module introduces students to the moon's appearance, phases, and positions in the sky using the Night Sky Planetarium Experience Station during programs at the Boys and Girls Club (Ft. Berthold Community College), Night Lights Afterschool program (Sitting Bull Community College), and Valley Middle School (UND and Dakota Science Center). Students also explore core concepts underlying the moon's phases and eclipses using the interactive Nature Experience Station before engaging in the culminating Mission Challenge activity in which they apply their knowledge to problem solving situations and projects. Fifteen pre-service and in-service teachers participate in professional development workshops, while approximately 300 urban and rural Native youth and family members participate in community programs. A mixed-methods evaluation examines the impact of Western and Native science on the learning of youth and families and their understanding of core concepts of science in a culturally responsive environment. The formative evaluation addresses collaboration, development, and implementation of the project using surveys and interviews to document participant progress and obtain input. The summative evaluation examines learning outcomes and partnerships through interviews and observations. Presentations at national conferences, journal publications, and outreach to teachers in the North Dakota Public School System are elements of the project's comprehensive dissemination plan. The project findings may reveal impacts on participants' interest and understanding of connections between Native and Western science, while also assessing the potential for model replication in similar locales around the country.
The Lunar and Planetary Institute will expand a successful pilot program in which libraries in Texas and Louisiana are used as community learning centers. The program is two-fold and includes both "Explore!" resource materials and "Fun with Science" modules. "Explore!" materials are a collection of space science posters, brochures, fact sheets, videotapes and references. These resources are disseminated to librarians for use as part of their collections and to support the "Fun with Science" modules. "Fun with Science" consists of eight space science modules that librarians are trained to use in after-school and summer youth programs. Module topics include rocketry, comets, impact cratering, remote sensing and space capsule design. Each year, 3-4 new modules will be produced. Librarians receive training on content, activities and NASA resources in 2-3 day sessions. The dissemination plan would enable the program to expand to include public libraries in Texas, Illinois (Chicago) and South Carolina, as well as school libraries as a secondary audience. Rural sites will be targeted and distance learning will be used for training when possible. CD ROMs containing the modules, training videos and a website will be developed to support this project.
DATE:
-
TEAM MEMBERS:
Stephanie ShippPamela ThompsonMary Noel
The Space Science Institute is establishing a museum educator/theater network of eight museums around the country, pairing larger with smaller institutions. The Association of Science-Technology Centers and the Astronomical Society of the Pacific also are collaborators. The primary audience is informal science education museum educators; secondary audiences are museum visitors experiencing the to-be-developed programs. The Science Theater Education Programming System (STEPS) is a technology that has been developed by the PI and others. The team will be continuing to expand the capability of the system for this project, and the partnering museums are collaboratively creating an initial set of theater programs on astrobiology, along with a suite of training programs and communication formats for educators. The STEPS technology allows these programs to be delivered both on site and via outreach, depending on the goals of each organization. The intent is to form the core of a community of practice that would enhance the professional capacity and identities of informal educators. The theater program format is positioned as a flexible, low-cost alternative to traveling exhibits, particularly for the smaller institutions. Deliverables include: the establishment of the network, the STEPS system and programs, professional development tutorials and workshops, evaluation of the programs, and a research project and report examining the network as a community of practice and vehicle for strengthening the professional identities of museum educators.
The Lunar and Planetary Institute (LPI) will use $286,915, or 67% of a $430,373 total project budget, over three years to develop "SkyTellers," a space science and astronomy resource for small informal (and formal) learning settings such as planetariums, museum classes, school and community libraries, youth groups and home school settings. LPI educators and science staff, in consultation with a Native American master story teller, evaluation consultants, and an advisory board, will develop 12 SkyTeller topics. Each SkyTeller topic pairs a myth or legend (primarily but not exclusively Native American) with a relevant science story (Sky Story/Science Story) that explains our current understanding of the phenomenon that the ancient tale sought to explain. Ancillary materials (illustrations produced by LPI graphics staff, images from the latest in space science missions and research) will complete the 12 story sets to be used by informal and formal science educators at a variety of venues. Extensive formative and summative evaluation (alpha and beta testing) at multiple test venues is designed to insure high quality informal science education products.
DATE:
-
TEAM MEMBERS:
Stephen MackwellStephanie ShippJoseph Hahn
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This education project is a time sensitive opportunity related to the March 9, 2016 Total Solar Eclipse occurring in a remote part of the world located in Waleia in the Federated States of Micronesia, a U.S. affiliated Pacific Island nation. The path of totality is only 100 miles wide and passes through only a few Pacific Island nations ending in Hawaii. This project uses this unique phenomenon to educate a large US and international audience about solar science using multi-platforms with integrated video, social media, and public programs. Project deliverables include the production of a broadcast of the eclipse live from Waleia in the Federated States of Micronesia on March 9, 2016 making it accessible to hundreds of countries and millions of people around the world via satellite and live streaming on the Internet. Additional deliverables include on-site educational programs at science centers and planetariums as well as media resources for long-term use. These resources will enhance the interest and preparedness for additional public engagement when the 2017 eclipse occurs in the U.S. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in solar physics research by funding the construction of the world's largest solar telescope, the Daniel K. Inouye Solar Telescope which is slated to begin operations in late 2019 and operated by the National Solar Observatory. This new facility will revolutionize researchers' capability to study the Sun and its magnetic fields. This education project leverages that investment with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and worldwide through the Internet.
DATE:
-
TEAM MEMBERS:
ExploratoriumRobert SemperNicole MinorRobyn Higdon
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
STAR_Net brings inquiry-based STEM1 learning experiences to public libraries through two traveling exhibits, associated programming for library patrons, and a virtual community of practice for library staff and others who are interested in bringing STEM programming to libraries. In 2010, the National Science Foundation (NSF) awarded a three-year grant to the Space Science Institute’s (SSI) National Center for Interactive Learning (NCIL) and its partners—the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP)—to
Intuitive Company researchers and evaluators assessed four components of the DUST Alternate Reality Game for potential reusability: 1) QTE Environment during Collapse, 2) Brain/Health Scanner Mobile App, 3) Microbe Web App, 4) Star Map Web App. We assessed reusability based on five variables (facilitation, user identification, digital access, player type, and timing) along a continuum of informal to formal learning contexts, from museums to after school programs to formal classroom settings. Our assessment revealed that the: 1. QTE Environment during the Collapse is most replayable in its
DATE:
TEAM MEMBERS:
Brigham Young University, University of MarylandJes KoepflerNidhi JalwalVictor Yocco
The final evaluation report for the Citizen Sky project highlights evaluative findings from three workshops, several live online events, participant interviews, and analysis of activity and project contributions through the citizensky.org website. Appendix includes survey questions.
STARBASE Minnesota strives to increase the knowledge, skills, and interest of inner-city elementary school youth in science, technology, engineering, and math (STEM) for greater academic and lifelong success. This study examines the potential long-term impacts of participation, including interest and engagement in STEM, academic achievement, high school graduation, and college enrollment.
Founded in 1999, the Silicon Valley Astronomy Lectures are non-technical illustrated public lectures, presented on six Wednesday evenings during each school year at Foothill College, in the heart of California's Silicon Valley. Speakers over the years have included a Nobel-prize winner, members of the National Academy of Sciences, the first woman in history to discover a planet, an astrophysicist who is an award-winning science fiction writer, and many other well-known scientists explaining astronomical developments in everyday language. The series is jointly sponsored by the Astronomical Society of the Pacific, the SETI Institute, NASA's Ames Research Center, and the Foothill College Astronomy Program. In-kind funding and staff time is contributed by the sponsoring organizations. The lectures are held and videotaped in the 950-seat Smithwick Theater in Los Altos Hills. Thanks to a generous grant from an anonymous local donor, each lecture is now video and audio taped, professionally edited, and made available free of charge on a number of web sites. Videotaped lectures include: * Frank Drake discussing his modern view of the Drake Equation, * Sandra Faber on how galaxies were "cooked" from the primordial soup, * Michael Brown explaining how his discovery of Eris led to the demotion of Pluto, * Alex Filippenko talking about the latest ideas and observations of black holes, * Natalie Batalha sharing the latest planet discoveries from the Kepler mission, * Anthony Aguirre discussing how it is possible to have multiple universes, and * Chris McKay updating the Cassini discoveries about Saturn's moon Titan.
The Chester County intermediate Unit developed strong collaborations between school districts and informal education providers across Pennsylvania to engage thousands of students in high quality learning experiences. NASA will support these partnering institutions as they engage local teachers in professional development in high quality instruction during the school year. Requirements for both summer activities and school year activities necessitates cooperative agreements with secondary education partners to ensure fulfilling participation requirements such as reaching a large number of middle school students and teachers. The CCIU has many potential partners in the PA SoI project who have expressed interest in participating; including Carnegie-Mellon Robotics Academy, Cheyney University, Widener University, the Philadelphia School District, the Pennsylvania Department of Education and the NASTAR flight facility. With a renewed effort by the CCIU the PA Summer of Innovation Program will be implemented through the PAIU NET to provide quality STEM programming to students and STEM training to teachers while monitoring student outcomes. In Eastern PA camps will be held August 1-5 at 36 sites in the 20 participating school districts statewide. In Chester County, camp sites include Gordon Elementary School and Pope John Paul II Regional Catholic School. Additionally several NASA SoI Mini-Camps were held increasing the breath and depth of the program's impact.
DATE:
-
TEAM MEMBERS:
Chester County Intermediate UnitJohn Hall