This study examined the validity of the Draw-A-Scientist Test (DAST), which is commonly used to capture students’ perceptions of scientists. Findings suggest that the DAST is not valid as a sole measurement. The originally identified stereotypical traits are no longer widely held by students.
As infographics and other visual forms of data become increasingly common, many educators wonder how to best integrate them into learning activities. Polman and Gebre interviewed 10 experts in science representation to understand common practices they used for selecting and interpreting infographics. The authors build on study results to generate guidelines for educators' use of infographics.
What do images communicate about humans’ place in nature? Medin and Bang posit that the artifacts used to communicate science—including words, photographs, and illustrations—commonly reflect the cultural orientations of their creators. The authors argue that Native Americans traditionally see themselves as part of nature and focus on ecological relationships, while European Americans perceive themselves as outside of nature and think in terms of taxonomic relationships.
Moving Beyond Earth Programming: “STEM in 30” Webcasts. The Smithsonian’s National Air and Space Museum (NASM) will develop nine “STEM in 30” webcasts which will be made available to teachers and students in grades 5-8 classrooms across the country. The primary goal of this program is to increase interest and engagement in STEM for students. Formative and summative evaluations will assess the outcomes for the program, which include the following:
Increased interest in STEM and STEM careers, Increased understanding of science, technology, engineering and mathematics (STEM), Increased awareness and importance of current and future human space exploration, and Increased learning in the content areas.
This series of live 30-minute webcasts from the National Air and Space Museum and partner sites focus on STEM subjects that integrate all four areas. The webcasts will feature NASA and NASM curators, scientists, and educators exploring STEM subjects using museum and NASA collections, galleries, and activities. During the 30-minute broadcasts, students will engage with museum experts through experiments and activities, ask the experts questions, and answer interactive poll questions. After the live broadcasts, NASM will also archive the webcasts in an interactive “STEM in 30” Gallery.
Discover NASA is the Discovery Museum’s endeavor to engage students in grades K through 12 as well as members of the general public in innovative space science and STEM-focused learning through the implementation of two modules: upgrades to the Challenger Learning Center, and the creation of K through 12 amateur rocketry and spacecraft design programming. The programming will be piloted at the Discovery Museum and Planetarium, and at the Inter-district Discovery Magnet School and the Fairchild-Wheeler Multi-Magnet High School, with an additional strategic partnership with the University of Bridgeport, which will provide faculty mentors to high school seniors participating in the rocketry program. Through these two modules, the Discovery Museum and Planetarium aims to foster an early interest in STEM, increase public awareness about NASA, promote workforce development, and stimulate an interest in the future of human space exploration. Both modules emphasize design methodologies and integration of more advanced space science into the STEM curriculum currently offered by Discovery Museum to visitors and public schools. The Challenger Learning Center upgrades will enable the Museum to deliver simulated human exploration experiences related to exploration of the space environment in Low Earth Orbit and simulated human exploration of Moon, Mars, and beyond, which will increase public and student awareness about NASA and the future of human space exploration. The development of an amateur rocketry and spacecraft development incubator for education, the general public, and commercial space will stimulate the development of key STEM concepts.
This report describes an evaluation of two educational programs that Iridescent offered with a grant from the National Science Foundation. These two programs were developed for youth and their families and were organized around open-ended Engineering Design Challenges. These are hands-on problem-solving activities supported by a web-based platform known as the Curiosity Machine. The Curiosity Machine and the Design Challenges were designed to work together to engage learners in fundamental physics and engineering concepts in fun and open-ended ways, while enhancing their curiosity, creativity
This Connecting Researchers to Public Audiences project plans to create a multimedia website, Into the Rift, a virtual journey to Lake Tanganyika in East Africa, along with teaching resources and a dissemination campaign. The content will focus on the high freshwater diversity of the 2nd largest lake in the world; the diverse array of cichlid fish in the lake; and the effects of overharvesting and global warming on the lake's ecosystem. The project's intended learning outcomes are that viewers will have enhanced awareness and understanding of: 1) the ecosystem-scale processes that support life in lakes; 2) the importance of intact natural ecosystems for the well-being of human societies; 3) the techniques that scientists use to learn more about the ecosystem-scale movement of matter and energy; and 4) potential career paths in STEM fields. These learning outcomes correlate to the current and proposed science standards, which provide a structure for content development and outcomes assessment. The project will be designed by the collaboration of an ecologist (the PI Dr. Yvonne Vadeboncoeur), education specialist (co-PI Dr. Lisa Kenyon), communication specialist (co-PI Dr. Elliot Gaines) all from Wright State University, and a media lab (Habitat Seven), and informed by formative evaluation conducted by Edu, Inc. The website, hosted by a guide from East Africa along with the PI, will be presented in three languages (Spanish, French, and Swahili) in addition to English. Edu, Inc. will also conduct a summative evaluation of all the components of the project with respect to the four intended learning outcomes and their related concepts as well as analyze the outcomes of the dissemination strategies. This CRPA uses internet technologies to make abstract scientific concepts and a largely inaccessible research location available to a wide audience. The project intends to inform and engage the audience with an aggressive use of social media in addition to the website. Into the Rift will provide material for both the lay audience and classrooms, including access to authentic scientific data to compare the Lake Tanganyika data to environmental data collected from the U.S. Great Lakes. Additional collaborations with established organizations, including Crossing Boundaries, Conservation Bridge and Community Bridges, will expand the reach and impact of the project to diverse audiences. The multi-lingual approach extends the reach to potentially an even greater audience both within and outside the U.S.
This pathways project would refine and test a game based on the Kinect technology gaming tool to teach seismology concepts in an informal education setting and how they apply to phenomenon in other STEM fields. The game will be developed as a companion tool to the "Quake Catcher Network" a low-cost network of seismic sensors in schools, homes and offices world-wide and tie-ins with seismology programs such as the great California ShakeOut with a participant base of 8.6 million. The project design would select three new learning modules, chosen by a group of scientists and educators, to incorporate into the game and evaluate player experience and knowledge gain. The activities will be conducted at a partner test site, an aquarium, frequented by area youth 8 - 12 years old. The focus of the effort is to add to the knowledge of how gaming can be used effectively in informal learning environments The game places the player as a scientist, allowing the player to make decisions about seismic station deployment strategies following an earthquake, installing the sensors and monitoring incoming data. The game has levels of difficulty and players accrue points by acting swiftly and correctly. Learning goals for the project include making abstract math concepts understandable; involve participants in data collection and the process of scientific investigation, plus demonstrate how scientists and mathematicians use tools of their fields to address real-world issues.
This Connecting Researchers and Public Audiences project will engage the public in understanding how species are born. The project builds on the PI's NSF-funded research on speciation and signal diversification in Monarcha Flycatchers of the Solomon Islands (NSF CAREER, #1137624). Project deliverables include a one-hour television program, website, and the use of social media. The team proposes to film an engaging tale that weaves historical research with modern molecular techniques to communicate to the public how new species are born. It will also illustrate the process of science and the people behind the research. The potential national audience is large, with a particular effort to reach 18-49 year olds. The program will be nationally distributed by one of the major television or cable channels. The website will provide a video gallery of short videos and photos, a blog from the field, and an in-depth learning section with new research about speciation. Evaluation of the project, conducted by Education Northwest, will focus on changes in audience knowledge and interest about speciation. The findings of the summative evaluation will be made available online at InformalScience.org.
The University of Chicago's Yerkes Observatory, the National Radio Astronomy Observatory, the University of North Carolina, the Astronomical Society of the Pacific, and 4-H are collaborating to provide professional development to 180 4-H leaders and other informal science educators, and engage 1,400 middle school youth in using research-grade robotic telescopes and data analysis tools to explore the Universe. Youth participating in 4H-based out-of-school programs in Wisconsin, West Virginia and North Carolina are learning about the universe and preparing for STEM careers by conducting authentic astronomy research, completing astronomy-related hands-on modeling activities, interacting with astronomers and other professionals who are part of the Skynet Robotic Telescope Network, and interacting with other youth who part of the Skynet Junior Scholars virtual community. The project is innovative because it is providing a diverse community of 4-H youth (including sight- and hearing-challenged youth and those from underrepresented groups) with opportunities to use high-quality, remotely located, Internet-controlled telescopes to explore the heavens by surveying galaxies, tracking asteroids, monitoring variable stars, and learn about the nature and methods of science. Deliverables include (1) online access to optical and radio telescopes, data analysis tools, and professional astronomers, (2) an age-appropriate web-based interface for controlling remote telescopes, (3) inquiry-based standards-aligned instructional modules, (4) face-to-face and online professional development for 4-H leaders and informal science educators, (5) programming for youth in out-of-school clubs and clubs, (6) evaluation findings on the impacts of program activities on participants, and (7) research findings on how web-based interactions between youth and scientists can promote student interest in and preparedness for STEM careers. The evaluation plan is measuring the effectiveness of program activities in (1) increasing youths' knowledge, skills, interest, self-efficacy, and identity in science, including youth who are sight- and hearing-impaired, (2) increasing educators' competency in implementing inquiry-based instruction and their ability to interact with scientists, and (3) increasing the number of Skynet scientists who are involved in education and public outreach.
The Virginia Institute of Marine Science (VIMS) and The Watermen's Museum, Yorktown, VA, will produce an underwater robotics research and discovery education program in conjunction with time-sensitive, underwater archeological research exploring recently discovered shipwrecks of General Cornwallis's lost fleet in the York River. The urgency of the scientific research is based upon the dynamic environment of the York River with its strong tidal currents, low visibility, and seasonal hypoxia that can rapidly deteriorate the ships, which have been underwater since 1781. Geophysical experts believe that further erosion is likely once the wrecks are exposed. Given the unknown deterioration rate of the shipwrecks coupled with the constraints of implementing the project during the 2011-2012 school-year, any delays would put the scientific research back at least 18 months - a potentially devastating delay for documenting the ships. The monitoring and studying of the historic ships will be conducted by elementary through high school-aged participants and their teachers who will collect the data underwater through robotic missions using VideoRay Remotely Operated Vehicles (ROVs) and a Fetch Automated Underwater Vehicle (AUV) from a command station at The Watermen's Museum. Students and teachers will be introduced to the science, mathematics, and integrated technologies associated with robotic underwater research and will experience events that occur on a real expedition, including mission planning, execution, monitoring, and data analysis. Robotic missions will be conducted within the unique, underwater setting of the historical shipwrecks. Such research experiences and professional development are intended to serve as a key to stimulating student interest in underwater archeological research, the marine environment and ocean science, advanced research using new technologies, and the array of opportunities presented for scientific and creative problem solving associated with underwater research. A comprehensive, outcomes-based formative and summative, external evaluation of the project will be conducted by Dr. L. Art Safer, Loyola University. The evaluation will inform the project's implementation efforts and investigate the project's impact. The newly formed partnership between the Waterman's Museum and VIMS will expand the ISE Program's objectives to forge new partnerships among informal venues, and to expand the use of advanced technologies for informal STEM learning. Extensive public dissemination during and after the project duration, includes but is not limited to, hosting an "Expedition to the Wrecks" web portal on the VIMS BRIDGE site for K-12 educators providing real-time results of the project and live webcasts. The website will be linked to the education portal at the Association for Unmanned Vehicle Systems International, the world's largest organization devoted to promoting unmanned systems and to the FIRST Robotics community through the Virginia portal. The website will be promoted through scientific societies, the National Marine Educators Association, National Science Teachers Association, and ASTC. Links will be provided to the Center for Archeological Research at the College of William and Mary and the Immersion Presents web portal--consultants to Dr. Bob Ballard's K-12 projects and JASON explorations. The NPS Colonial National Historic Park and the Riverwalk Landing will create public exhibits about the shipwreck's archeological and scientific significance, and will provide live observation of the research and the exploration technologies employed in this effort.
In Defense of Food (IDOF) is a media and outreach project based on Michael Pollan's best-selling book of the same title. Through the lens of food science, IDOF is designed to engage diverse audiences in learning about: (1) how science research is conducted, (2) how research findings are used in media, marketing, and public policy, and (3) how to apply food science research in everyday life. IDOF will be created by Kikim Media, an independent production company, broadcast and distributed by PBS and supported by an extensive outreach campaign and interactive website. The project's educational materials will be developed, in part, by the Teacher's College at Columbia University's Center for Food and Nutrition, with dissemination supported by the Coalition for Science After School and by Tufts University's Healthy Kids Out of School initiative, which involves nine of the leading out of school time (OST) organizations, such as Girl Scouts USA, and the National Urban League. The project advisory committee includes highly respected researchers in food, nutrition, and health. IDOF will use an integrated strategy of learning resources, combining a television documentary with online/social media, community outreach, and youth activities. Knight Williams Research Communications will conduct formative and summative evaluation of all major components of the project. The results will advance the informal science community's understanding of how the combination of a documentary with outreach, website/social media, and afterschool activities impacts motivation and learning. The evaluation study will pay special attention to the degree to which participation in the community events, social media/website, and afterschool activities motivates deeper or extended engagement with the subject. Project evaluation results and educational resources will be widely disseminated to the informal science community. IDOF includes a two-hour documentary film that will be produced in both English and Spanish; a community-level outreach campaign focused on reaching underserved audiences who may not watch public television; a set of activities for use in afterschool programs, youth programs and schools; and an interactive and content-rich website with tightly integrated social media tools. IDOF will be nationally broadcast by PBS; the Spanish-language version of IDOF will be broadcast by Vme Television. The ambitious IDOF educational materials and outreach campaign, combined with interactive web and social media, will reach large and diverse audiences. The intended impacts on audiences include increased knowledge and understanding of the scientific process by learning what food scientists do, what techniques they use, and how scientists arrive at their conclusions; the development of critical thinking skills audiences can use when evaluating messages about food and nutrition in media and advertising and when making decisions about what food to buy and eat; and becoming active learners and consumers regarding food. Evaluation results will be widely disseminated to science media producers and the informal science community via professional publications and presentations at conferences. The ultimate value of the In Defense of Food documentary and learning initiative will be to enhance public understanding of the crucial importance of science in people's everyday lives and in shaping dozens of daily decisions.