Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
Sense-making with data through the process of visualization—recognizing and constructing meaning with these data—has been of interest to learning researchers for many years. Results of a variety of data visualization projects in museums and science centers suggest that visitors have a rudimentary understanding of and ability to interpret the data that appear in even simple data visualizations. This project supports the need for data visualization experiences to be appealing, accommodate short and long-term exploration, and address a range of visitors’ prior knowledge. Front-end evaluation
DATE:
resource project Public Programs
African American and Latinx youth are often socialized towards athletic activity and sports participation, sometimes at the expense of their exploration of the range of potential career paths including those in the science, technology, engineering, and mathematics (STEM) fields. This project will immerse middle school youth in the rapidly growing world of sports data analytics and build their knowledge of statistics concepts and the data science process. The project will focus on the STEM interests and knowledge development of African American and Latinx youth, an underrepresented and underserved group in STEM. Researchers will explore the ways youths' social identities can and should serve as bridges towards future productive academic and professional identities including those associated with STEM learning and the STEM professions. The outcomes of the project will advance knowledge in promoting elements of informal learning experiences that build adolescents' motivation and persistence for productive participation in STEM courses and careers. This project is funded by the Advancing Informal STEM Learning program (AISL), which seeks to advance new approaches to and evidence-based understanding of the design and development of STEM learning opportunities for the public in informal environments, and the Innovative Technology Experiences for Students and Teachers program (ITEST), which funds projects that leverage innovative uses of technologies to prepare diverse youth for the STEM workforce, with a focus on broadening participation among underrepresented and underserved groups in STEM fields.

Over a three-year period, 250 middle school learners in the West Baltimore, Maryland and Hyattsville, Maryland areas will engage in three main learning activities: Summer Camp (three weeks), Sports Day Saturdays, and a Spring Summit. Through a partnership between the University of Maryland and Coppin State University, the project will utilize resources in multiple departments and units across both universities, and engage with youth sports leagues such as the American Athletic Union (AAU) to support participants' engagement in the data science process including collection of raw data, exploration of data, development of models, visualization, communication, and reporting of data, and data-driven decision making. Furthermore, youth participants will attend local AAU, college, and professional sporting events, and interact with members of coaching staffs to better understand the ways performance data technologies are utilized to inform recruitment and team performance. The mixed-methods research agenda for this project is guided by three main questions: (1) What elements of the project's model are most successful at supporting congruence of adolescents' academic identity, including STEM identity and social identity including athletic identity? (2) What elements support adolescents' motivation, and persistence for productive participation in current and future STEM courses? (3) To what extent did the project appear to influence participants' perceptions of their future professions? At multiple points throughout the experience, participants will complete surveys designed to document and assess statistics and data science knowledge; interest in STEM careers; academic, social and athletic identity development; and STEM course taking patterns. Researchers will also observe project activities, interview a focal group of participants, and survey participants' parents to identify elements of learning experiences that encourage and support adolescents' interest in STEM disciplines and STEM professions. The project team will develop conceptual and pedagogical frameworks that support middle school youth' engagement and interest in science, engineering, technology, and mathematics through repurposing spaces where these youths frequent. A major outcome of the project will be workforce preparation and offers a promising approach for encouraging youth to persist along STEM pathways, which may ultimately result in broadened participation in STEM workforces.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lawrence Clark Stephanie Timmo Brown
resource project Higher Education Programs
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.

While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE: -
TEAM MEMBERS: Amy Tuininga Ashwani Vasishth Pankaj Lai
resource project Museum and Science Center Programs
There is a growing need for citizens to be able to work with data and consider how data is represented. This work employs a design, make, play framework to create data modeling learning experiences for young children and their caregivers in an informal setting. The project develops and tests a curriculum for a workshop series for 5-8 year old children to engage them in playful exploration of data modeling. Children engage in data collection, data representation, and data analysis by drawing on their own experiences of museum exhibitions. The curriculum supports developing children's interest and engagement with data science and data literacy, which are foundational knowledge for a range of STEM careers and disciplines. This project advances efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM).

The project is grounded in a theoretical framework for young children's learning that focus on playful exploration, design, and building on children's own experiences and questions. The research examines how the curriculum needs to be designed to support families in data modeling, foster engagement in data modeling by both younger (ages 5-6) and older (ages 7-8) children, and provide evidence of active approaches to learning about STEM. The design and development project tests and investigates the materials using a design-based research framework. Children who participate in the workshop series should increase their confidence in solving problems, taking initiative, and drawing on available resources to pursue their own questions and respond to novel challenges. Data collected includes interviews with participants, artifacts of children's work throughout the series, and an observational instrument to document families' problem solving, persistence, and engagement with data science concepts.
DATE: -
TEAM MEMBERS: Katherine McMillan Culp ChangChia James Liu Janella Watson Delia Meza Kaitlin Donnelly Susan Letourneau Laycca Umer Catherine Cramer Stephen Uzzo John Archacki
resource project Exhibitions
As the world is increasingly dependent upon computing and computational processes associated with data analysis, it is essential to gain a better understanding of the visualization technologies that are used to make meaning of massive scientific data. It is also essential that the infrastructure, the very means by which technologies are developed for improving the public's engagement in science itself, be better understood. Thus, this AISL Innovations in Development project will address the critical need for the public to learn how to interpret and understand highly complex and visualized scientific data. The project will design, develop and study a new technology platform, xMacroscope, as a learning tool that will allow visitors at the Science Museum of Minnesota and the Center of Science and Industry, to create, view, understand, and interact with different data sets using diverse visualization types. The xMacroscope will support rapid research prototyping of public experiences at selected exhibits, such as collecting data on a runner's speed and height and the visualized representation of such data. The xMacroscope will provide research opportunities for exhibit designers, education researchers, and learning scientists to study diverse audiences at science centers in order to understand how learning about data through the xMacroscope tool may inform definitions of data literacy. The research will advance the state of the art in visualization technology, which will have broad implications for teaching and learning of scientific data in both informal and formal learning environments. The project will lead to better understanding by science centers on how to present data to the public more effectively through visualizations that are based upon massive amounts of data. Technology results and research findings will be disseminated broadly through professional publications and presentations at science, education, and technology conferences. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project is driven by the assumption that in the digital information age, being able to create and interpret data visualizations is an important literacy for the public. The research will seek to define, measure, and advance data visualization literacy. The project will engage the public in using the xMacrocope at the Science Museum of Minnesota and at the Center of Science and Industry's (COSI) science museum and research center in Columbus, Ohio. In both museum settings the public will interact with different datasets and diverse types of visualizations. Using the xMacroscope platform, personal attributes and capabilities will be measured and personalized data visualizations will be constructed. Existing theories of learning (constructivist and constructionist) will be extended to capture the learning and use of data visualization literacy. In addition, the project team will conduct a meta-review related to different types of literacy and will produce a definition with performance measures to assess data visualization literacy - currently broadly defined in the project as the ability to read, understand, and create data visualizations. The research has potential for significant impact in the field of science and technology education and education research on visual learning. It will further our understanding of the nature of data visualization literacy learning and define opportunities for visualizing data in ways that are both personally and culturally meaningful. The project expects to advance the understanding of the role of personalization in the learning process using iterative design-based research methodologies to advance both theory and practice in informal learning settings. An iterative design process will be applied for addressing the research questions by correlating visualizations to individual actions and contributions, exploring meaning-making studies of visualization construction, and testing the xMacroscope under various conditions of crowdedness and busyness in a museum context. The evaluation plan is based upon a logic model and the evaluation will iteratively inform the direction, process, and productivity of the project.
DATE: -
TEAM MEMBERS: Katy Borner Kylie Peppler Bryan Kennedy Stephen Uzzo Joe E Heimlich
resource project Exhibitions
This pathways project will study how audiences in public spaces, in this case those in a museum setting, relate to and make sense of large data displays. The project is preliminary to development of a traveling, hands-on exhibition enabling users to create and utilize representations of big data displays such as maps and charts. As the test case, the project will use science maps that provide an overview of science generally and specific areas of STEM, charting and exploring the history and future of science and technology. The data collection portion of the project will take place at the New York Hall of Science, the Marian Koshland Science Museum, COSI in Columbus, Ohio, and WonderLab Museum in Bloomington, Indiana. The project will create a foundation for the design of museum exhibits and educational programs that teach museum visitors how to explore, engage and make better sense of big data. The project is potentially transformative because big data is becoming ubiquitous and making sense out of large data displays is necessary in order to understand big data sets.
DATE: -
TEAM MEMBERS: Katy Borner Joe E Heimlich Adam Maltese
resource project Media and Technology
This pathways project would refine and test a game based on the Kinect technology gaming tool to teach seismology concepts in an informal education setting and how they apply to phenomenon in other STEM fields. The game will be developed as a companion tool to the "Quake Catcher Network" a low-cost network of seismic sensors in schools, homes and offices world-wide and tie-ins with seismology programs such as the great California ShakeOut with a participant base of 8.6 million. The project design would select three new learning modules, chosen by a group of scientists and educators, to incorporate into the game and evaluate player experience and knowledge gain. The activities will be conducted at a partner test site, an aquarium, frequented by area youth 8 - 12 years old. The focus of the effort is to add to the knowledge of how gaming can be used effectively in informal learning environments The game places the player as a scientist, allowing the player to make decisions about seismic station deployment strategies following an earthquake, installing the sensors and monitoring incoming data. The game has levels of difficulty and players accrue points by acting swiftly and correctly. Learning goals for the project include making abstract math concepts understandable; involve participants in data collection and the process of scientific investigation, plus demonstrate how scientists and mathematicians use tools of their fields to address real-world issues.
DATE: -
TEAM MEMBERS: Deborah Kilb
resource project Media and Technology
The Virginia Institute of Marine Science (VIMS) and The Watermen's Museum, Yorktown, VA, will produce an underwater robotics research and discovery education program in conjunction with time-sensitive, underwater archeological research exploring recently discovered shipwrecks of General Cornwallis's lost fleet in the York River. The urgency of the scientific research is based upon the dynamic environment of the York River with its strong tidal currents, low visibility, and seasonal hypoxia that can rapidly deteriorate the ships, which have been underwater since 1781. Geophysical experts believe that further erosion is likely once the wrecks are exposed. Given the unknown deterioration rate of the shipwrecks coupled with the constraints of implementing the project during the 2011-2012 school-year, any delays would put the scientific research back at least 18 months - a potentially devastating delay for documenting the ships. The monitoring and studying of the historic ships will be conducted by elementary through high school-aged participants and their teachers who will collect the data underwater through robotic missions using VideoRay Remotely Operated Vehicles (ROVs) and a Fetch Automated Underwater Vehicle (AUV) from a command station at The Watermen's Museum. Students and teachers will be introduced to the science, mathematics, and integrated technologies associated with robotic underwater research and will experience events that occur on a real expedition, including mission planning, execution, monitoring, and data analysis. Robotic missions will be conducted within the unique, underwater setting of the historical shipwrecks. Such research experiences and professional development are intended to serve as a key to stimulating student interest in underwater archeological research, the marine environment and ocean science, advanced research using new technologies, and the array of opportunities presented for scientific and creative problem solving associated with underwater research. A comprehensive, outcomes-based formative and summative, external evaluation of the project will be conducted by Dr. L. Art Safer, Loyola University. The evaluation will inform the project's implementation efforts and investigate the project's impact. The newly formed partnership between the Waterman's Museum and VIMS will expand the ISE Program's objectives to forge new partnerships among informal venues, and to expand the use of advanced technologies for informal STEM learning. Extensive public dissemination during and after the project duration, includes but is not limited to, hosting an "Expedition to the Wrecks" web portal on the VIMS BRIDGE site for K-12 educators providing real-time results of the project and live webcasts. The website will be linked to the education portal at the Association for Unmanned Vehicle Systems International, the world's largest organization devoted to promoting unmanned systems and to the FIRST Robotics community through the Virginia portal. The website will be promoted through scientific societies, the National Marine Educators Association, National Science Teachers Association, and ASTC. Links will be provided to the Center for Archeological Research at the College of William and Mary and the Immersion Presents web portal--consultants to Dr. Bob Ballard's K-12 projects and JASON explorations. The NPS Colonial National Historic Park and the Riverwalk Landing will create public exhibits about the shipwreck's archeological and scientific significance, and will provide live observation of the research and the exploration technologies employed in this effort.
DATE: -
TEAM MEMBERS: Mark Patterson
resource research Public Programs
The Coalition for Science After School was launched January 28, 2004 at the Santa Fe Institute, home to the world’s leading researchers on the study of complexity. Against the dazzling backdrop of the New Mexican mesa, 40 educational leaders from diverse but overlapping domains—science, technology, engineering and mathematics education and after-school programs—met to grapple with three emerging, important trends in youth development and science learning in this country: 1. An explosion in the number of U.S. youth attending after-school programs, and increasing links between school and after
DATE:
TEAM MEMBERS: The Coalition for Science After School Leah Reisman
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -
resource project Media and Technology
The institution is The Ohio State University at Lima, the university partners are the University of North Carolina at Greensboro and Fayetteville State University. It's About Discovery is a unique partnership to engage students and teachers in critical thinking skills in STEM content areas. The Ford Partnership for Advanced Studies (PAS) new science curriculum is the foundation for the project which will include over 700 students and 20-25 teachers. While the primary focus is on students, throughout the life of the project all teachers will participate in professional development focusing on the PAS units to ensure the quality teaching and understanding of the content. Technology will be integrated throughout the program to enable students to create inquiry based projects across state lines and for teachers to continue their professional development opportunities. Community partners will serve as mentors, host field trips, and engage in on-line conversations with students. An interactive website will be created for both teachers and students. The focus is on 8th grade science as it relates to STEM careers, 9th grade physical science and 10th science and mathematics. We are implementing a new Ford PAS curriculum module, Working Towards Sustainability, which comprises of four modules: We All Run on Energy, Energy from the Sun, Is Hydrogen a Solution? and The Nuclear Revolution. Teachers across states will engage in a new professional development model. Students will create projects through on-line conversations. A website will be created for project participants and the ITEST community. These hands-on, inquiry-based learning experiences engage students and prepare and encourage them to pursue science, engineering, and technology in high school and beyond. All PAS curricula use real world experiences, open-ended problems and result in real world applications. Assessments are on-going and inquiry driven. Teamwork and on-line resources and research are built into the curriculum design. The evaluation consists of a multi-method pre-post design. Teachers complete a Pre Survey at the beginning of the program and then again at the end of the school year. Students complete a Pre Survey at the beginning of the school year and a post survey at the end of the school year. In addition, teachers share students' scores on curriculum assessments completed throughout the year, including student scores on the Comprehensive Adult Student Assessment System's (CASAS) Assessment of Critical Thinking in Science writing tasks.
DATE: -
TEAM MEMBERS: Dean Cristol Christopher Andersen Lynn Sametz
resource research Media and Technology
Poster on NSF DRL-1114690 (Spy Hounds) presented at the 2012 ISE PI Meeting.
DATE:
TEAM MEMBERS: Kate Taylor