The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.
While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE:
-
TEAM MEMBERS:
Amy TuiningaAshwani VasishthPankaj Lai
This poster was presented at the 2014 AISL PI Meeting in Washington DC. It describes the CLUES project that provides STEM education opportunities to families.
DATE:
TEAM MEMBERS:
New Jersey Academy for Aquatic SciencesBarbara Kelly
This poster, presented at the 2014 AISL PI Meeting, shows the impact of an afterschool program that brought hands-on, inquiry-based science to ELL students in a low SES area of Southern California. Data sources included observation of lessons, interviews with students, and collection of student work Results demonstrate a shift in student thinking around students' internalization of becoming a scientist and who is capable of being a scientist.
DATE:
TEAM MEMBERS:
University of California, IrvineLauren Shea
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes an EAGER project that conducts ongoing experiments on the chemical precursors to life as exhibit experiences in partner venues.
A team from Michigan State University, in partnership with six science, art-science, and art museum venues around the country and with the assistance of researchers at Georgia Institute of Technology, is implementing an EAGER project to conduct ongoing experiments on the chemical precursors to life as exhibit experiences for visitors to these venues. The experiments, to be run over the course of several months as the exhibit travels around the country, expand on the 1950s' work of Stanley Miller and Harold Urey, which continues to stimulate new investigations and publications, including experiments being conducted on the International Space Station. The experiments/exhibits share key features across the three different kinds of venues, allowing the team to study and compare the impacts on the various publics of engaging them in real-time science experiments. Two major goals are (1) to explore new ways to attract public interest in science by performing in public settings previously untried experiments on the chemical precursors to life, and (2) to investigate how the context of different kinds of venues and their visitor characteristics affect how visitors interpret the experience and what they learn. The team is also exploring how various data visualization representations can be designed to foster public interest and understanding. The intent is to develop an approach that has potential applications to other STEM content domains and expanding the reach to broader public audiences.
Small Matters is a scientific storytelling project in response to a supplemental funding opportunity designed to pair an NSF Center for Chemical Innovation with an Informal Science Education organization. Meisa Salaita, Director for Education & Outreach for the Center for Chemical Evolution, and Ari Daniel, independent radio and multimedia producer and science journalist, collaborated on this project designed to increase chemical literacy in the general public and promote partnerships between scientists and informal science educators. In the tradition of folklore, educators have used storytelling to stimulate students’ critical thinking skills across and within disciplines, demonstrating an improvement in comprehension and logical thinking, enhancing memory, and creating a motivation and enthusiasm for learning. Within science, storytelling allows learners to experience the how of scientific inquiry, including the intellectual and human struggles of the scientists who are making discoveries. Accordingly, our project uses multimedia and live performance to engage the public in learning about chemistry through storytelling. We have developed a series audio pieces entitled Small Matters aimed at enriching public science literacy, namely within the chemical sciences. The format of these pieces includes standard public radio narrative style, short scientist-narrated nuggets, and imaginative sonic explorations of key chemistry concepts. The stories have been disseminated through a variety of broadcast media connections, including "Living on Earth" and local Atlanta public radio station WABE. In addition to the audio-based science journalism pieces that we have been producing, we have taken the stories we uncovered and brought them to live audiences, integrating chemistry, journalism, and the arts to create a human connection between our scientists and the public. The radio pieces were woven in with performances of poetry, comedy and satire in collaboration with literary performing arts group The Encyclopedia Show to create a live variety show (May 2013). In addition, scientists identified through our production of Small Matters were trained in storytelling techniques and brought together for an evening of live storytelling in Atlanta with The Story Collider (March 2014).
DATE:
-
TEAM MEMBERS:
NSF/NASA Center for Chemical EvolutionMeisa Salaita
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE:
-
TEAM MEMBERS:
Andre NelYoram CohenHilary GodwinArturo KellerPatricia Holden
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
Formative evaluation of one of four pieces of the Marcellus Matters: EASE project. This study examined the effectiveness of an eight-week adult/community education program about topics related to natural gas development.
Formative evaluation of one of four pieces of the Marcellus Matters: EASE project. This study examined the effectiveness of two "Community Conversations" theater and dialogue/discussion events at a) communicating natural gas development-related science content and community issues, and b) promoting audience members' openness to dialogue about natural gas development-related issues.
Janet Iwasa, Harvard University, is a Discovery Corps Postdoctoral Fellow for the 2006-2007 and 2007-2008 academic years. This fellowship will bridge between a Chemical Bonding Center (CBC) and the Boston Museum of Science by providing scientifically accurate, dynamic molecular visualizations. The audience for these visualizations spans from researchers to the general public. Iwasa's key goal will be to present chemical evolution in a clear and engaging way to the public. This Discovery Corps Postdoctoral Fellowship is supported by the Division of Chemistry and the Office of Multidisciplinary Activities. The Discovery Corps Fellowship Program is a pilot program seeking new postdoctoral and professional development models that combine research expertise with professional service. Discovery Corps Fellows leverage their research expertise through projects that address areas of national need. Their projects enhance research capacity and infrastructure and contribute to workforce development and job creation. The Discovery Corps Program supports both Postdoctoral Fellows and Senior Fellows.
The importance of reporting current science to the general public is more important now than ever before. The best way to ensure enthusiastic support for science is to engage the general public as directly as possible. Unlike schooling, learning in a museum is self-motivated, self-directed, and can be lifelong. The partnership between Columbia University's MRSEC (Materials Research Science and Engineering Center) and the New York Hall of Science will do this in an exciting manner by development of innovative 'rolling exhibits' (Discovery Carts) that are visually attractive, intellectually stimulating and demonstrate current research. This project will unite a dynamic University research faculty, dedicated graduate students, and high school teachers from one of the largest and best known teacher research experience programs in the country. NY Hall of Science, specialists in public science education, have developed exhibitions, over the past 20 years, for school and family group visitors in biology, chemistry and physics. Most recently, the Hall opened an 800-foot biochemistry discovery lab featuring ten experiments that teach visitors about the role of molecules in everyday life. The lab is facilitated by an explainer, and hundreds of families use the lab throughout the year. All exhibits and programs have rigorous science presented in an engaging manner in an educationally non-threatening environment. Columbia University is one of the premier research institutions in the country. Columbia's MRSEC is engaged in multi-faceted educational outreach activities in the New York metropolitan area, including a close working relationship with Columbia's 16 year old RET program. Together these institutions are well situated to involve the research community in public education activities that will inform the public about the current advances in science. Teachers and graduate students who have worked in MRSEC labs will assist in bringing new skills and ideas to the development of museum programming and exhibits. The teachers have experienced both the research projects first-hand and have had the experience in translating the research into meaningful classroom activities for their students. The graduate students have worked alongside the teachers, assisting them in making the research meaningful to high school students. Broader Impact: Highly skilled educators who can improve a young person's chances for success are like gold for the nation's schools, which are under pressure for tough accountability standards. Teachers will influence over a thousand students during the course of their careers. The Hall's Explainers are of high school and college age. These two groups will have positive impacts on our society for years to come. They will benefit from participation, and the tens of thousands of visitors to the museum will learn about cutting edge research.