Skip to main content

Community Repository Search Results

resource project Public Programs
This project takes an ethnographic and design-based approach to understanding how and what people learn from participation in makerspaces and explores the features of those environments that can be leveraged to better promote learning. Makerspaces are physical locations where people (often families) get together to make things. Some participants learn substantial amounts of STEM content and practices as they design, build, and iteratively refine working devices. Others, however, simply take a trial and error approach. Research explores the affordances are of these spaces for promoting learning and how to integrate technology into these spaces so that they are transformed from being makerspaces where learning happens, but inconsistently, into environments where learning is a consistent outcome of participation. One aim is to learn how to effectively design such spaces so that participants are encouraged and helped to become intentional, reflective makers rather than simply tinkerers. Research will also advance what is known about effective studio teaching and learning and advance understanding of how to support youth to help them become competent, creative, and reflective producers with technology(s). The project builds on the Studio Thinking Framework and what is known about development of meta-representational competence. The foundations of these frameworks are in Lave and Wengers communities of practice and Rogoff's, Stevens et al.'s, and Jenkins et al.'s further work on participatory cultures for social networks that revolve around production. A sociocultural approach is taken that seeks to understand the relationships between space, participants, and technologies as participants set and work toward achieving goals. Engaging more of our young population in scientific and technological thinking and learning and broadening participation in the STEM workplace are national imperatives. One way to address these imperatives is to engage the passions of young people, helping them recognize the roles STEM content and practices play in achieving their own personal goals. Maker spaces are neighborhood spaces that are arising in many urban areas that allow and promote tinkering, designing, and construction using real materials, sometimes quite sophisticated ones. Participating in designing and successfully building working devices in such spaces can promote STEM learning, confidence and competence in one's ability to solve problems, and positive attitudes towards engineering, science, and math (among other things). The goal in this project is to learn how to design these spaces and integrate learning technologies so that learning happens more consistently (along with tinkering and making) and especially so that they are accessible and inviting to those who might not normally participate in these spaces. The work of this project is happening in an urban setting and with at-risk children, and a special effort is being made to accommodate making and learning with peers. As with Computer Clubhouses, maker spaces hold potential for their participants to identify what is interesting to them at the same time their participation gives them the opportunity to express themselves, learn STEM content, and put it to use.
DATE: -
resource research Public Programs
The Maker Movement is a community of hobbyists, tinkerers, engineers, hackers, and artists who creatively design and build projects for both playful and useful ends. There is growing interest among educators in bringing making into K-12 education to enhance opportunities to engage in the practices of engineering, specifically, and STEM more broadly. This article describes three elements of the Maker Movement, and associated research needs, necessary to understand its promise for education: 1) digital tools, including rapid prototyping tools and low-cost microcontroller platforms, that
DATE:
TEAM MEMBERS: Lee Martin
resource research Public Programs
Although computer science drives innovations that directly affect our everyday lives, few K–12 students have access to engaging and rigorous computer science learning. This article describes an effort to democratize access to computer science education through a program based on inquiry, culturally relevant curriculum, and equity-oriented pedagogy.
DATE:
TEAM MEMBERS: Jean Ryoo
resource research Public Programs
Afterschool continues to be promoted as a complementary setting to school for strengthening science, technology, engineering, and math (STEM) education (for example, Krishnamurthi, Bevan, Rinehart, & Coulon, 2013). This is a reasonable idea: 10.2 million children and youth in the U.S. participate in structured afterschool programs (Afterschool Alliance, 2014), and the flexibility of afterschool settings allows for innovative approaches to STEM exploration and engagement.
DATE:
TEAM MEMBERS: Thomas Akiva Kaleen Tison Povis Ani Martinez
resource project Public Programs
In partnership with Future Makers and several Maryland public libraries, the Maryland State Department of Education’s Division of Library Development and Services (DLDS) will teach children ages 4 to 7 the basic principles of programming through the use of Primo, an open-source robotics platform. With Primo, children use blocks to create algorithms that guide a robot through a maze. This will establish a foundation for learning more advanced programming skills later on, set early learners on the path to fluency in computer science, and establish a stronger mindset in computational thinking through play and experimentation. As Primo does not rely on a computer screen, the program will be replicable in a variety of environments; the curriculum will also be inclusive to young children with varying degrees of ability.
DATE: -
TEAM MEMBERS: Liz Sundermann
resource project Public Programs
Georgetown County Library will improve the digital-age critical workforce skills of local young people through STEM-related digital activities. Classes relating to online STEM resources, digital video production, and app development will result in increased skills and interpersonal abilities, as well as an appreciation for the public library as a dynamic and informative place. By working with a number of community organizations, the library seeks to reach a local youth community that has historically experienced high rates of poverty and low rates of high school completion, and build on previous efforts to provide job fairs, skills training, and other initiatives.
DATE: -
TEAM MEMBERS: Dwight McInvaill
resource project Media and Technology
The Young Developers program is an after school program conceptualised and run by The P-STEM Foundation. It introduces computer programming and design concepts to high school age students from South African historically disadvantaged communities, where the majority of students have had little or no interaction with computers. Young Developers uses Self Organised Learning Methodology and involves introducing a series of increasingly complex challenges / questions that the participants have to collaboratively solve. The first module is run in Scratch with the final objective being the creation of a racing car game. The second module is run in Python using Turtle graphics with an objective of creating an animation. This program runs as pods in each of the communities that the P-STEM foundation works in. Each pod has up to 30 teens from the age of 10 to 18. Each pod is peer led and peer driven, and the pace of learning is determined by the participants. In 2015, we would also like to introduce national competitions which pods participate in against other pods.
DATE: -
TEAM MEMBERS: The P-STEM Foundation Vari Mureriwa
resource project Public Programs
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
DATE: -
resource project Media and Technology
This project supports the development of technological fluency and understanding of STEM concepts through the implementation of design collaboratives that use eCrafting Collabs as the medium within which to work with middle and high school students, parents and the community. The researchers from the University of Pennsylvania and the Franklin Institute combine expertise in learning sciences, digital media design, computer science and informal science education to examine how youth at ages 10-16 and families in schools, clubs, museums and community groups learn together how to create e-textile artifacts that incorporate embedded computers, sensors and actuators. The project investigates the feasibility of implementing these collaboratives using eCrafting via three models of participation, individual, structured group and cross-generational community groups. They are designing a portal through which the collaborative can engage in critique and sharing of their designs as part of their efforts to build a model process by which scientific and engineered product design and analysis can be made available to multiple audiences. The project engages participants through middle and high school elective classes and through the workshops conducted by a number of different organizations including the Franklin Institute, Techgirlz, the Hacktory and schools in Philadelphia. Participants can engage in the eCrafting Collabs through individual, collective and community design challenges that are established by the project. Participants learn about e-textile design and about circuitry and programming using either ModKit or the text-based Arduino. The designs are shared through the eCrafting Collab portal and participants are required to provide feedback and critique. Researchers are collecting data on learner identity in relation to STEM and computing, individual and collective participation in design and student understanding of circuitry and programming. The project is an example of a scalable intervention to engage students, families and communities in developing technological flexibility. This research and development project provides a resource that engages students in middle and high schools in technology rich collaborative environments that are alternatives to other sorts of science fairs and robotic competitions. The resources developed during the project will inform how such an informal/formal blend of student engagement might be scaled to expand the experiences of populations of underserved groups, including girls. The study is conducting an examination of the new types of learning activities that are multiplying across the country with a special focus on cross-generational learning.
DATE: -
TEAM MEMBERS: Yasmin Kafai Karen Elinich Orkan Telhan
resource project Media and Technology
This project is making novel use of familiar technology (smartphones and tablets) to address the immediate and pressing challenge of affordable, ongoing, large-scale museum evaluation, while encouraging museum visitors to engage deeply with museum content. Using a smartphone app, museum visitors pose questions to a 'virtual scientist' called Dr. Discovery (Dr. D). Dr. D provides answers and the chance to complete fun mini-challenges. The questions visitors ask are gathered in a large database. An analytics system analyzes these data and a password-protected website provides continuous, accessible evaluation data to museum staff, helping them make just-in-time tweaks (or longer term changes) to exhibit-related content (such as multimedia, lecture topics, docent training, experience carts, etc.) as current events and visitors' needs and interests change. The intellectual merit of this project is that it is building evaluation capacity among informal educators, advancing the fields of visitor studies, museum evaluation, informal science learning, and situated engagement, and is contributing to the development of novel evaluation techniques in museums. This project has many broader impacts: The Ask Dr. Discovery system is available to any venue that wishes to use or adapt it to their context. By enhancing the visitor experience and improving museum access to data for evaluation and data-driven decision making across the country, Ask Dr. Discovery has both a direct and indirect impact on museums and visitors of all types. This project is also training the next generation of STEM and education innovators by employing a diverse team of undergraduate students.
DATE: -
TEAM MEMBERS: Judd Bowman Catherine Bowman Brian Nelson
resource project Professional Development, Conferences, and Networks
The Cyberlearning Resource Center (CRC) has responsibility for promoting integrative collaboration among cyberlearning grantees (across NSF programs); synthesis and national dissemination of cyberlearning findings, technologies, models, materials, and best practices; creating a national presence for Cyberlearning; helping the disparate Cyberlearning research and development communities coordinate efforts to build capacity; and providing infrastructure (technological and social) for supporting these efforts. Monitored through the Cyberlearning: Transforming Education program, the CRC serves as a resource for all NSF grantees and programs with cyberlearning components, helping to promote synergy and integrate projects across NSF's cyberlearning investments. Among society's central challenges are amplifying, expanding, and transforming opportunities people have for learning and more effectively drawing in, motivating, and engaging young learners. Engaging actively as a citizen and productively in the workforce requires understanding a broad variety of concepts and possessing the ability to collaborate, learn, solve problems, and make decisions. Whether learning is facilitated in school or out of school, and whether learners are youngsters or adults, to develop such knowledge and capabilities, learners must be motivated to learn, actively engage over the long term in learning activities, and put forth sustained cognitive and social effort. Consistent with NSF's mission and strategic plan, a variety of programs at NSF invest in research aimed towards achieving these goals. In support of this important thematic thrust, the Cyberlearning Resource Center works with researchers and NSF program officers to identify and disseminate findings from across programs and projects; develop ways to broker productive partnerships and collaborations; convene meetings for purposes of envisioning the future, integrating findings, and building capacity,; and monitor the cyberlearning portfolio and its influences and impacts.
DATE: -
TEAM MEMBERS: Jeremy Roschelle Patricia Schank Sarita Nair-Pillai Marianne Bakia
resource project Public Programs
EvalFest (Evaluation Use, Value, and Learning through Festivals of Science and Technology) will test innovative evaluation methods in science festivals that are being held across the country and assess in what ways and how effectively they are used. Morehead Planetarium and Science Center (at the University of North Carolina-Chapel Hill) and the University of California, San Francisco, in collaboration with over twenty science festivals, will (1) investigate whether a multisite evaluation approach is an effective model for creating common metrics for informal STEM education, (2) develop common methods to measure the effects of Festivals, (3) create a query-able database of 50,000 Festival attendees to share with the informal STEM learning field, and (4) document whether these efforts also result in new knowledge related to informal STEM education. The project will develop the Enterprise Feedback Management (EFM) system and query-able database for the festival community. EFMs are systems, including processes and software, that enable groups (such as the festival network) to collect, organize, analyze and share data. The EFM system will be designed to integrate data across sites and to allow users to extract data of interest. The project will refine evaluation tools currently used within the Science Festival Alliance that assess self-reported festival learning, and the effects of festival attendance, motivation, and future science participation. It will collect economic impact data and longitudinal festival attendee data. The project will also develop some new evaluation tools such as secret shopper observational protocols. Data from festival attendees will be collected onsite at participating festivals.
DATE: -