This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes an EAGER project that conducts ongoing experiments on the chemical precursors to life as exhibit experiences in partner venues.
This report summarizes findings from a three-year study of the Time Team America: Science of Archeology project, funded by the National Science Foundation. The project included a series of archaeology field schools for youth, four broadcast episodes and a redesigned website with a variety of information and instructional resources. The evaluation included both formative and summative components and a mix of qualitative and quantitative methods including surveys, interviews, and focus groups. Includes interview protocol and survey.
The Magnet Lab has a strong commitment to education. Through the Center for Integrating Research & Learning, the lab supports educational programming at all academic levels: K-12, technical, undergraduate, graduate and postdoctoral. Please explore the links listed to the left to find out more about the depth of our educational resources for the community, for teachers and for students as well as our unique research offerings. Our programs are designed to excite and educate students, teachers and the general public about science, technology and the world around them. All of our programs are developed in close collaboration with research scientists and educators. Housed at and partly funded by the MagLab, the Center is uniquely positioned to take advantage of the excellent resources, connections, world-class facilities and cutting-edge science the lab has to offer. We also receive generous support from the National Science Foundation and the State of Florida. The Center maintains a rigorous research agenda designed to investigate how Center programs and materials affect teachers and students. Our Mission Statement is to expand scientific literacy and to encourage interest in and the pursuit of scientific studies among educators and students of all ages through connections between the National High Magnetic Field Laboratory and the National Science Foundation, the community of Tallahassee, the State of Florida and the nation.
COASST is a citizen science project of the University of Washington in partnership with state, tribal and federal agencies, environmental organizations, and community groups. COASST believes citizens of coastal communities are essential scientific partners in monitoring marine ecosystem health. By collaborating with citizens, natural resource management agencies and environmental organizations, COASST works to translate long-term monitoring into effective marine conservation solutions.
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. This research directly addresses the results of our prior NSF supported work that identified shared issues of indigenous people, natural resources and the decline of native language use among underserved populations in the Altai and Yellowstone systems. This project contributes significantly to our emerging understanding of science learning in informal settings. It addresses a unique conception of ecological learning in three dimensions; personal, community and cultural perspectives. Research and education objectives align with modern conceptualizations of informal science learning as proposed by the National Academies of Science (2009). The MSU-GASU collaboration provides a holistic view of science learning and will unite diverse intellectual resources and research efforts in unique ecological and social systems. Both the Yellowstone and Altai mountain systems are of global concern as part of worldwide natural and cultural resources impacted by pervasive development, recreation and tourism activities and climate change. The underlying theoretical foundation for learning proposed in this research project is the basis for effective approaches to enable isolated rural populations to contribute traditional knowledge and wisdom to contemporary issues related to world-wide ecological and cultural issues including global climate change. Aspects of sustainability practices that are embedded in the knowledge and social processes of both marginalized and dominant societies will be better understood and taken into consideration for future research and education activities. Research outcomes will contribute to more effective informal, place-based and experiential science learning to help empower communities and decision makers in meeting challenges of sustainability. Inevitably, we expect this work to extend our understanding of science learning related to critical natural and cultural resources and their management. An understanding of how, why and where learning takes place will help extend the US and international research and education agendas related to informal science learning, natural and cultural resource management and sustainability.
Non-technical part.
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project we will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. Three cohorts of five MSU students will travel to the Altai Republic for eight weeks in the summers of 2013, 2014 & 2015. MSU students will comprise a research team with GASU science, education and language faculty to conduct research in the city of Gorno-Altaisk, two medium size villages such as Onguday and two small villages such as Karakol. We expect to work with youth in each setting and interview a representative sample at each site. As a research team we expect to gain a better understanding of how indigenous youth use native Altai language in informal settings to learn about environment. We expect to compare sights within the study. As part of our larger research interests in ecological learning and native people, we will conduct a similar comparative study in the Yellowstone Ecosystem with Native American youth. The studies associated with this project will add to our understanding about the extent and nature of native language use to learn science in underserved populations in very sensitive and unique ecological and cultural settings.
DATE:
-
TEAM MEMBERS:
Michael BrodyClifford MontagneArthur BangertChristine StantonShane Doyle
Produced by National Geographic Kids and Cricket Moon Media with support from the National Science Foundation, Marine Missions is a free iPad touch screen application for preschoolers. The app is hosted by Jacques, a hermit crab character who guides pre-readers through six ocean missions and the building of a fantasy sea creature. Players steer Jacques’ boat to three green markers to clean up polluted spots in the ocean and three orange markers to complete different water current challenges in which players rescue Jacques’ tools from a whirlpool, run past blowholes, and surf on tidal bores
National Parks are full of interesting and unusual STEM features which often intrigue visitors whose questions are answered by park personnel. In addition to the natural features, there are often researchers in the parks gathering data and conducting experiments. Park personnel are not apprised of these studies yet are often questioned about them. This collaborative project's goals are to derive a mechanism to educate the park personnel so they can respond to the visitor's inquiries. Collaborators include the National Park Service (NPS), TERC, Winston-Salem State University, and the park personnel at Carlsbad Caverns National Park. The plan is to work through the park interpreters who are employees of NPS and often are the voice for explaining the park's natural features. For this project, the interpreters and researchers will collaborate on the explanations of the science and TERC will work with the interpreters on interacting or educating the public visitors on the research. This is a pilot study to determine how best to bridge the scientists and their research to the park visitors. Evaluation on all elements in this study will be done by Char Associates and the Institute for Mathematics and Science Education at New Mexico State University. The results of this study are to determine the issues in explaining the research to the park interpreters and thence to the park visitors. If successful, it is anticipated that a model will be developed in collaboration with the NPS for use in other National Parks.
This Pathways project from the Ocean Discovery Institute (ODI) seeks to develop and pilot a program model designed to fill an identified gap in citizen science research and practice literature: how to effectively engage and better understand how to foster participation among people from under-represented groups in citizen science research. The ODI model is designed around six principles: (1) leaders who are reflective of the community, (2) science that is locally relevant, (3) guided, as opposed to self-guided, experiences, (4) direct interactions with scientists, (5) progressively increasing responsibilities for participants who express interest, and (6) removing barriers to participation, such as transportation, language, family involvement and access to technology. The project addresses environmentally degraded, crime-ridden local canyons, a locally relevant STEM-related issue, and leverages the Southern California Coastal Water Research Project's (SCCWRP) regional citizen science effort focused on identifying the sources and pathways of trash through regional watersheds. The scientific research components of the project focus on four canyons in the area, employing sampling methods developed by SCCWRP. Youth who are part of other ODI programs and who have demonstrated leadership and interest in science, work with the project team to scaffold family and youth participation in project activities taking place during afterschool and weekend time. Based on continued participation in the project, community participants can become more involved in the project, starting as "new scientists" and moving through "returning scientists" to "expert scientists" roles. The project evaluation seeks to identify the role and importance of the components of the proposed model with respect to participation, retention, and learning by participants from groups under-represented in STEM. The dissemination products of this Pathways project include a white paper describing the model and lessons learned as well as presentations to community groups and education and citizen science practitioners. Based on insights from the iterative approach to the model during this Pathways study, a subsequent full-scale development project would seek to engage citizen science projects around the nation in adapting the model to increase participation of individuals from groups underrepresented in STEM, including building out ODI's citizen science programming.
DATE:
-
TEAM MEMBERS:
Lindsay GoodwinRoxanne RuzicTheresa Sinicrope Talley
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
This research project establishes a new research center, the InforMath Collaborative, that brings together university educational researchers and professionals at art and science museums in San Diego's Balboa Park. The InforMath Collaborative is investigating and building the capacity of informal learning institutions to support content and identity learning in mathematics. Through sustained collaborations that unite research, design, and professional development, members of the InforMath Collaborative are conducting design-based research on exhibits and programs that integrate art and science content from participating museums with the mathematics of topology and projective geometry.
The broader goal of the InforMath Collaborative is to transform cultural perceptions of mathematics in ways that broaden learners' access to the discipline. The project aims to develop informal mathematical learning experiences that make mathematics feel accessible, body-based, creative, and deeply relevant to a wide array of other knowledge domains, including both art and science. The project will build and strengthen regional and national networks of educational professionals who work in informal mathematics learning and expand the capacity of informal institutions to support engaging, innovative, content-rich, and culturally transformative mathematical learning experiences.
DATE:
-
TEAM MEMBERS:
Ricardo NemirovskyPaul SiboroskiMolly Kelton
COASSTal Communities of Science is a citizen-science project whose goal is to increase the scientific and educational reach of a highly successful, action-oriented and rigorous citizen science program - the Coastal Observation And Seabird Survey Team (COASST), by adding a new data module on marine debris that will feature innovative technological approaches including mobile apps and web-based crowdsourcing. The marine debris module will complement an existing module on beached birds, allowing COASST to more completely assess coastal environmental health. For instance, marine debris data, focused particularly on issues of invasive species, harm to wildlife, and debris sourcing, will be immediately useful in marine science and resource management. Once designed and vetted by professional scientists and science educators, the new module will be implemented by citizen scientists in over 100 in-community trainings conducted throughout the COASST geographic range, from northern California to the coast of Alaska, including remote coastal communities with limited access to scientific information. Over 1,000 new participants will join the program, bringing the total number of active volunteers to 2,000 within the 4 years of the project. A complementary social science research component will advance the field of informal STEM learning by focusing on the factors facilitating recruitment and especially retention in citizen science projects, using COASST as a model. The current models of science learning in informal contexts will be extended by bringing them together with conceptual approaches to the development of interest, communities of practice, and activity theory. Research will specifically focus on differences in individual motivation to join COASST; follow participants as they enter the program and eventually become central members of the COASST community of practice; and assess the degree to which individual, programmatic and socio-cultural factors contribute to participant retention. A linked independent evaluation will assess the depth of learning individuals experience as a function the training and materials they receive, and amount and type of data they collect. Both research and evaluation components will utilize pre/post surveys, interviews, and longitudinal journaling.