Skip to main content

Community Repository Search Results

resource research Media and Technology
Click! Urban Adventure Game was a mixed-reality role-playing game where girls worked in teams to solve a fictional mystery based on a real-world issue, using technology and science to conduct their investigation. In this article we describe the design of the experience and present evidence that the game increased girls’ confidence, interest, and knowledge of science and technology and helped to build a community of support and conversation-centred learning for girls. This example has implications for the design of informal learning experiences that bridge interest and identity with science and
DATE:
TEAM MEMBERS: Lauren Giarratani Anujah Parikh Betsy DiSalvo Karen Knutson Kevin Crowley
resource project Public Programs
We have a wide spectrum of informal programs that include museum-based programs, afterschool programs, an NSF AISL project on science identity formation in girls, observatory visitor center programs, night-based programs, programs for Native American groups, undergraduate student-based outreach programs,and professional development for informal educations.
DATE: -
TEAM MEMBERS: Stephen Pompea
resource project Public Programs
The Franklin Institute (TFI), in collaboration with the Institute for Learning Innovation (ILI), will conduct a research effort that explores the role that informal science learning plays in supporting girls' long-term interest, engagement and participation in science communities, hobbies and careers. Five longstanding programs for girls, begun 5-20+ years ago, will be the focus of the proposed study and include the National Science Partnership (NSP), Girls at the Center (GAC), Wonderwise, and Women in Natural Sciences (WINS). The selected study projects have access to girl participants who are high-school aged or older and represent diverse race, ethnicity and SES. A national Research Advisory Council will ground the investigation and review the findings at each stage of the research. The Community of Practice (CoP) literature (Lave and Wenger, 1991) will provide the theoretical frame for the overarching research question. Findings will document long-term impacts of girls' participation in identified informal science programs, determine how informal contexts in general contribute to girls' science learning and achievement, and develop a model for understanding the impact of informal science learning initiatives. Deliverables will include specific examples of informal learning experiences that support girls' long-term participation in science and evidence of the types of influences, including significant adults and particular activities, that contribute to girls' trajectories of participation. Dissemination tools will be a national conference, a research monograph and a series of workshops conducted in conjunction with professional conferences for informal science educators. By better understanding the impact of informal programs in science, specifically and more generally, and by developing and demonstrating an effective model for understanding such impact across projects, the proposed research stands to inform the field and provide a base for future project development and research efforts. The research results will improve the understanding of practice in these arenas and will document the significant role that informal programs place in influencing girls' vocational and avocational choices and participation in STEM fields. The study will also demonstrate the applicability of the CoP research model and its lessons to other informal science programs.
DATE: -
resource project Professional Development, Conferences, and Networks
Based on nearly two decades of museum programming for low-income Hispanic and African American girls at the Miami Science Museum, this extension service project employs a train-the-trainers approach to build a network of museum-based Extension Agents dedicated to helping informal science educators attract the interest and support the persistence of minority girls, grades 6-12, currently underrepresented in STEM studies. Led by the Miami Science Museum, the collaboration brings together an experienced group of institutions with representation from the informal science, gender research, and engineering communities. In addition to the Museum, the Expert Project Team consists of key staff from the Association of Science-Technology Centers (ASTC), and SECME Inc. (formerly the Southeastern Consortium of Minorities in Engineering), who serve as the conduit for the participation of minority engineering professional organizations. An advisory/research panel of researchers in gender in STEM, whose work complements those of the project investigators, works closely with the Expert Project Team to prepare Extension Agents from ten geographically dispersed museums, who in turn provide a range of training and peer mentoring services to the practitioner community of informal science educators in science-rich institutions nationwide. Participating museums include: Connecticut Science Center (Hartford, CT), New York Hall of Science (New York, NY), Maryland Science Center (Baltimore, MD), Miami Science Museum (Miami, FL), COSI (Columbus, OH), St. Louis Science Center (St. Louis, MO), Louisville Science Center (Louisville, KY), Sci-Port (Shreveport, LA), Explora (Albuquerque, NM), and California Academy of Sciences (San Francisco, CA).
DATE: -
TEAM MEMBERS: Judy Brown Laura Huerta Migas Michele Williams
resource project Media and Technology
This proposed four-year effort envisions a new approach to promoting science literacy through science journalism as a subject of study. It is premised on a critical set of assumptions: (a) Most citizens have the need to interpret scientific information found in popular media (e.g., newspapers, magazines, online resources, science-related television programs); (b) science journalism provides reliable, well-researched science information; (c) authentic science writing provides motivation to learn; and (d) standards and rubrics specifically developed for evaluating students' science-related expository text do not exist. Thus, the project approaches science journalism as a means to assist students to investigate and coherently write about contemporary science and to learn to base assertions and descriptions on reliable, publicly available sources. To this end, the project aims to develop, pilot, and evaluate a model of instruction that focuses on the following aspects: (a) Identifying questions of both personal and public interest; (b) evaluating contemporary science-related issues; (c) making available highly regarded sources of information as exemplars (in-print, online, interviews); (d) synthesizing information; (e) assessing information based on fact-checking using the five Ws (who, what, where, when, and why); and (f) coherently explaining claims and evidence. A hypothesis and a set of research questions guide this effort. The hypothesis is the following: If participating students successfully attain the fundamental elements of the proposed model, then they will become more literate and better critical consumers and producers of scientific information. The main guiding research question of the proposed activity is the following: Does the teaching of science journalism using an apprenticeship model, reliable data sources, and science-specific writing standards improve high school students' understanding of science-related public literacy? Secondary questions include (a) Is the teaching of science journalism an efficacious, replicable and sustainable model for improving science literacy?; (b) How useful are science-related standards and rubrics for scaffolding and evaluating students' science writing and science literacy?; and (c) What is the nature of the engagement in science that this apprenticeship invites?
DATE: -
TEAM MEMBERS: Alan Newman Joseph Polman E. Wendy Saul Cathy Farrar Alan Newman
resource project Media and Technology
"Ongoing collaboration-wide IceCube Neutrino Observatory Education and Outreach efforts include: (1) Reaching motivated high school students and teachers through IceCube Masterclasses; (2) Providing intensive research experiences for teachers (in collaboration with PolarTREC) and for undergraduate students (NSF science grants, International Research Experience for Students (IRES), and Research Experiences for Undergraduates (REU) funding); and (3) Supporting the IceCube Collaboration’s communications needs through social media, science news, web resources, webcasts, print materials, and displays (icecube.wisc.edu). The 2014 pilot IceCube Masterclass had 100 participating students in total at five institutions. Students met researchers, learned about IceCube hardware, software, and science, and reproduced the analysis that led to the discovery of the first high-energy astrophysical neutrinos. Ten IceCube institutions will participate in the 2015 Masterclass. PolarTREC teacher Armando Caussade, who deployed to the South Pole with IceCube in January 2015, kept journals and did webcasts in English and Spanish. NSF IRES funding was approved in 2014, enabling us to send 18 US undergraduates for 10-week research experiences over the next three years to work with European IceCube collaborators. An additional NSF REU grant will provide support for 18 more students to do astrophysics research over the next three summers. At least one-third of the participants for both programs will be from two-year colleges and/or underrepresented groups. "
DATE: -
TEAM MEMBERS: Jim Madsen Silvia Bravo Gallart
resource project Exhibitions
The College of Physicians of Philadelphia’s Broken Bodies, Suffering Spirits: Injury, Death, and Healing in Civil War Philadelphia will transcend the basic facts of war, offering visitors an intimate view of the experiences of real people augmented by anatomical specimens, instruments, manuscripts, images, and printed texts. The exhibit and web-based educational materials will explore two major themes: how the war forced soldiers, healers, and family members to manage injury, recovery, and death in dramatically new ways; and how the lasting effects of the devastating conflict forever changed soldiers’ relationships with their own bodies and minds. In a city with strong historical connections to Civil War medical history, the College’s unique institutional history and unparalleled Mütter Museum and Historical Medical Library collections ensure that the exhibit will offer a new view of the conflict, firmly grounded in the medical humanities, to a large, diverse audience.
DATE: -
TEAM MEMBERS: Robert Hicks
resource project Media and Technology
The project will develop and study the impact of science simulations, referred to as sims, on middle school childrens' understanding of science and the scientific process. The project will investigate: 1) how characteristics of simulation design (e.g., interface design, visual representations, dynamic feedback, and the implicit scaffolding within the simulation) influence engagement and learning and how responses to these design features vary across grade-level and diverse populations; 2) how various models of instructional integration of a simulation affect how students interact with the simulation, what they learn, and their preparation for future learning; 3) how these interactions vary across grade-level and diverse populations; and 4) what critical instructional features, particularly in the type and level of scaffolding, are needed. Working with teachers, the team will select 25 existing sims for study. Teachers and students will be interviewed to test for usability, engagement, interpretation, and learning across content areas. The goal will be to identify successful design alternatives and to formulate generalized design guidelines. In parallel, pull-out and classroom-based studies will investigate a variety of use models and their impact on learning. Ten new simulations will then be developed to test these guidelines. Products will include the 35 sims with related support materials available for free from a website; new technologies to collect real-time data on student use of sims; and guidelines for the development of sims for this age population. The team will also publish research on how students learn from sims.
DATE: -
TEAM MEMBERS: Katherine Perkins Daniel Schwartz Michael Dubson Noah Podolefsky
resource project Media and Technology
The Physics and Chemistry Education Technology (PhET) Project is developing an extensive suite of online, highly-interactive simulations, with supporting materials and activities for improving both the teaching and learning of physics and chemistry. There are currently over 70 simulations and over 250 associated activities available for use from the PhET website (http://phet.colorado.edu). These web-based resources are impacting large number of students. Per year, there are currently over 4 million PhET simulations run online and thousands of full website downloads for offline use of the simulations. The goal is that this widespread use of PhET's research-based tools and resources will improve the education of students in physics and chemistry at colleges and high schools throughout the U.S. and around the world. This PhET project combines a unique set of features. First, the simulation designs and goals are based on educational research. Second, using a team of professional programmers, disciplinary experts, and education research specialists enables the development of simulations involving technically-sophisticated software, graphics, and interfaces that are highly effective. Third, the simulations embody the predictive visual models of expert scientists, allowing many interesting advanced concepts to become widely accessible and revealing their relevance to the real world. And finally, the project is actively involved in research to better understand how the design and use of simulations impacts their effectiveness - e.g. investigating questions such as "How can these new technologies promote student understanding of complex scientific phenomena?" and "What factors inhibit or enhance their use and effectiveness?".
DATE: -
TEAM MEMBERS: Katherine Perkins Michael Dubson Noah Finkelstein Robert Parson Carl Weiman
resource project Media and Technology
This collaborative project between Tufts University and the Massachusetts Institute of Technology is researching and developing a new version of the Scratch programming language to be called ScratchJr, designed specifically for early childhood education (K-2). The current version of Scratch, which is widely implemented, is intended for ages 8-16 and is not developmentally appropriate for young children. This work will provide research-based evidence regarding young children's abilities to use an object-oriented programming language and to study the impact this has on the children's learning of scientific concepts and procedures. The team will develop ScratchJr in an iterative cycle, testing it in both in the Devtech lab at Tufts and the Eliot Pearson lab school and with a wider network of early childhood partners. At the end of the three-year project, ScratchJr will have been tested with approximately 350 students in K-2, 40 parents, and 58 early childhood educators. ScratchJr will have three components: 1) a developmentally appropriate interface, with both touch screen and keyboard/mouse options; 2) an embedded library of curricular modules with STEM content to meet federal and state mandates in early childhood education; and 3) an on-line resource and community for early childhood educators and parents. The research questions focus on whether ScratchJr can help these young children learn foundational knowledge structures such as sequencing, causality, classification, composition, symbols, patterns, estimation, and prediction; specific content knowledge; and problem solving skills. This interdisciplinary proposal makes contributions to the fields of learning technologies, early childhood education and human computer interaction. ScratchJr has the potential for broad implementation in both formal and informal settings.
DATE: -
TEAM MEMBERS: Mitchel Resnick Marina Bers
resource project Media and Technology
The ScratchEd project, led by faculty at the Massachusetts Institute of Technology and professionals at the Education Development Center, is designing, developing, and studying an innovative model for professional development (PD) of teachers who use the Scratch computer programming environment to help their students learn computational thinking. The fundamental hypothesis of the project is that engagement in workshops and on-line activities of the ScratchEd professional development community will enhance teacher knowledge about computational thinking, their practice of design-based instruction, and their students' learning of key computational thinking concepts and habits of mind. The effectiveness of the ScratchEd project is being evaluated by research addressing four specific questions: (1) What are the levels of teacher participation in the various ScratchEd PD offerings and what do teachers think of these experiences? (2) Do teachers who participate in ScratchEd PD activities change their use of Scratch in classroom instruction to create design-based learning opportunities? (3) Do the students of teachers who participate in the ScratchEd PD activities show evidence of developing an understanding of computational thinking concepts and processes? (4) When the research instruments developed for the evaluation are made available for teachers in the Scratch community to use for self-evaluation, how do teachers make use of them? Because both computational thinking and design-based instruction are complex activities, the project research is using a combination of survey, interview, and artifact analysis methods to answer the questions. The ScratchEd professional development and research work will provide important insight into the challenge of helping teachers create productive learning environments for development of computational thinking. Those efforts will also yield a set of evaluation tools that can be integrated into the ScratchEd resources and used by others to study development of computational thinking and design-based instruction.
DATE: -
TEAM MEMBERS: Mitchel Resnick
resource project Media and Technology
This project's aim is to understand collaboration, cooperation, and learning in the context of a large, distributed virtual organization consisting of children and teachers building web-based simulations and animations using the Scratch software. The PIs will study the nature and patterns of cooperation in the Scratch decentralized learning environment, establish principles to guide the development of systems that foster cooperative attitudes and behaviors, and develop strategies to cultivate computational-thinking capacities that are important for productive cooperation and problem-solving in virtual organizations. The Scratch community consists of over 400,000 registered members discussing, remixing, and reusing more than a million projects. The project is a collaborative project with researchers from MIT, Harvard, and the University of Pennsylvania drawn from computer science, psychology, child development, education, organizational science, and economics. Using a novel combination of experimental and ethnographic methods, the research will provide insights into how young people cooperate in virtual organizations, their attitudes and motivations related to cooperation, and their development of computational-thinking skills and capacities necessary for productive cooperation and creative learning. The researchers expect that the findings will contribute to the design and understanding of more effective virtual organizations, particularly in the areas of learning, education, and cooperative creation. The methods used include observational studies, design interventions, and field experiments. The test bed will be the Scratch community and the evaluations will be done by mining the online record of cooperation in the construction of new simulations and animations. The outcomes of the project will include an improved Scratch environment, design principles for the construction of distributed virtual organizations that encourage cooperation and co-construction of knowledge and artifacts, and new methods of teaching computational thinking in an engaging environment. The Scratch community of 400,000 members will be part of this work. This project is potentially transformative because of the engaging nature of this particular application, because of its applicability to similar virtual communities, and because of its promise to reach a diverse community of learners.
DATE: -
TEAM MEMBERS: Mitchel Resnick Natalie Rusk John Maloney Yochai Benkler Yasmin Kafai