As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will develop a national infrastructure of state and regional partnerships to scale up The Franklin Institute's proven model of Leap into Science, an outreach program that builds the capacity of children (ages 3-10) and families from underserved communities to participate in science where they live. Leap into Science combines children's science-themed books with hands-on science activities to promote life-long interest and knowledge of science, and does so through partnerships with informal educators at libraries, museums, and other out-of-school time providers. Already field-tested and implemented in 12 cities, Leap into Science will be expanded to 90 new rural and urban communities in 15 states, and it is estimated that this expansion will reach more than 500,000 children and adults as well as 2,700 informal educators over four years. The inclusion of marginalized rural communities will provide new opportunities to evaluate and adapt the program to the unique assets and needs of rural families and communities.
The project will include evaluation and learning research activities. Evaluation will focus on: 1) the formative issues that may arise and modifications that may enhance implementation; and 2) the overall effectiveness and impact of the Leap into Science program as it is scaled across more sites and partners. Learning research will be used to investigate questions organized around how family science interest emerges and develops among 36 participating families across six sites (3 rural, 3 urban). Qualitative methods, including data synthesis and cross-case analysis using constant comparison, will be used to develop multiple case studies that provide insights into the processes and outcomes of interest development as families engage with Leap into Science and a conceptual framework that guides future research. This project involves a partnership between The Franklin Institute (Philadelphia, PA), the National Girls Collaborative Project (Seattle, WA), Education Development Center (Waltham, MA), and the Institute for Learning Innovation (Corvallis, OR).
Supporting and sustaining public science literacy and engagement are important goals of informal science education institutions worldwide. Although there is evidence that both science centers and natural history museums positively influence public science literacy and engagement, significant differences exist between these two types of institutions. This international workshop on Integration of Science Centers with Natural History Museums for Imparting Informal Education addresses this issue by convening key science center and natural history museum professionals from 9 countries in South and Southeast Asia, as well as the United States, to explore the strengths and limitations of the assets, philosophies and strategies of these institutions. Beyond the benefits science center and natural history museum professionals attending will receive, the effort will significantly contribute to the broader US and international conversation about the future of science centers and natural history museums, as well as other museum-like, science-rich informal education institutions, in these regions and beyond. In particular, supporting personal and cultural relevance has been a major focus of informal science education organizations globally, and the recommendations that emerge from the meeting will significantly contribute to this dialogue and help to make advances in the disciplinary field of informal science education.
This international workshop, hosted in Malaysia and facilitated by researchers from the Institute for Learning Innovation, convenes 40 science center and natural history museum professionals to explore the affordances and constraints of science centers and natural history museum exhibitions, programs, outreach efforts, websites, etc. The conference is designed to examine the opportunities, challenges and barriers to integrating key design principles that blend the best of science centers and natural history museums, while guiding the creation of new forms of 21st century informal science education institutions. Additional goals explore how to make informal science education institutions in general more relevant to 21st century publics, both culturally and personally, as well as foster intra- and international collaborations between science center and natural history museum professionals. Toward these ends, all conference participants will commit to the completion of pre-conference assignments; active preparation and involvement at the meeting; and, assistance with the dissemination of project findings. The major deliverable will be a Whitepaper describing the outcomes of the meeting and the key design principles that leverage the effectiveness and relevance of each of these institutions. The Whitepaper will be produced in both hard copy and electronic form and more broadly disseminated throughout the natural history museum and science center fields in all participating countries. The electronic form will be hosted and available for download through the website of the Institute for Learning Innovation and the Center for Advancing Informal Science Education (CAISE) with links to all participating institutions. This project is supported jointly by the NSF Office of International Science and Engineering (OISE) and the Advances in Informal STEM Education (AISL) program.
The widespread accessibility of live streaming video now makes it possible for viewers around the world to watch live events together, including unprecedented, 24/7 views of wildlife. In addition, online technologies such as live chatting and forums have opened new possibilities for people to collaborate from locations around the world. The innovation that the projects provide is bringing these opportunities together, enabling real-time research and discussion as participants observe and annotate live streaming footage; sharing questions and insights through live Q&A sessions; and explore data with interactive visualization tools. Scientists will support the community's research interests, in contrast with traditional models of citizen science in which communities support the work of scientists. This project will enable people from diverse backgrounds and perspectives to co-create scientific investigations, including participants who might not otherwise have access to nature. The evaluation research for this project will advance the understanding of practices that enable interconnected communities of people to participate in more phases of scientific discovery, and how participation affects their learning outcomes. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. As such, this project will advance a new genre of Public Participation in STEM Research (PPSR). It will also advance scientific exploration using live wildlife cams and establish a database for long-term research to understand how bird behavior and reproductive success are affected by environmental change. This project aims to deepen public involvement in science, building on knowledge and relevance for STEM learning by creating an online learning environment that expands on traditional crowdsourcing models of PPSR in which participants collect data to answer questions driven by scientists. In this project, participants are involved in co-created research investigations, including asking questions, deciding what data are needed, generating data, looking for patterns, making interpretations, reviewing results, and sharing findings. The goals are to 1) create a system that involves the public more deeply in scientific research; 2) develop participants' science skills and interests; 3) increase participants' understanding of birds and the environment; 4) generate new scientific knowledge about wildlife; and 5) advance the understanding of effective project design for co-created PPSR projects at a national scale. Through iterative design and evaluation, the project will advance the understanding of the conditions that foster online collaboration and establish design principles for supporting science and discovery in online learning environments. Through scaling and quasi-experimental studies, the evaluation research will advance the understanding of how learning outcomes may be similar or different for participants engaging in different ways, whether they observe the cams and read about the investigation, process data as contributors, provide some input as collaborators, or join in most or all of the scientific process as co-creators. Despite the popularity of live wildlife cams, with millions of people watching hundreds of cams around the world, little research has been conducted on the use of live cams for collaborative work in formal or informal science education. The infrastructure and open-source framework created for this project will expand the capacity for online communities of people from diverse career backgrounds and perspectives to collaborative on solving personally meaningful questions and contribute to new knowledge. Using this project as a prototype, cam operators from around the world could build networks of cams, enabling future studies with broader scope for comparative biological studies and discoveries. Additionally, it will serve as a model for use in classrooms or for online communities exploring other scientific fields using live-streaming content in collaborative research. By involving scientists and participants from across society as collaborators and co-creators, this project can help increase public engagement with science, technology, and environmental stewardship while advancing the understanding of the natural world and informing public decision-making.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will collaboratively design, test and study effective and efficient ways to develop embedded assessments (EAs) of citizen science (CS) volunteer scientific inquiry skills in order to better understand the impact of these CS experiences on volunteer scientific inquiry abilities. EAs are assessment activities that are integrated into the learning experience and allow learners to demonstrate their competencies in an unobtrusive way. The acquisition of scientific inquiry skills is an essential, even defining, characteristic of citizen science experiences that has a direct influence on data quality. Methods for assessing the direct impact of CS on volunteers' scientific inquiry skills are limited. The project will result in EA measures designed for use by diverse CS projects, strategies that CS projects can use to develop EA assessment tools, and research findings that document opportunities, supports and barriers of this innovative method across a range of CS contexts. Findings and initial resources will be shared with the broad array of stakeholders in CS through conferences, workshops, peer-reviewed publication, community websites and other relevant venues. The results of this work also have the potential to generalize to other informal science learning experiences that engage the public in science The project will address two research questions: (1) What processes are useful for developing broadly applicable EA methods or measures? and (2) What can we learn about gains in volunteers' scientific inquiry skills when citizen science organizations use EA? These will be addressed through design-based research focused on two streamlining strategies. For the reframing data validation strategy, six leaders from five established citizen science projects will conduct secondary analyses of their existing databases to uncover the skill gains of CS volunteers that are currently unexplored in their data. For the common measure strategy, ten CS projects will collaborate to create and test common EA measures of select identification-based skills. Data will be gathered through meeting notes, participant interviews and action plans, and volunteer skill gains to capture process and products of each strategy. Data will be analyzed using grounded theory, multiple process techniques, multilevel models, and repeated-measures analysis of variance. The design-based-research framework will significantly expand project impacts by jump-starting evaluation of the participating CS projects and by producing initial resources for two distinct EA strategies that have the potential to dramatically alter practice and impact citizen science efforts to ultimately enable more people to learn by contributing to the science endeavor. The project will directly equip the 15 participating citizen-science projects with authentic performance tools to assess the quality of their programing, which will expand their understanding of CS volunteer skills and help them better recruit and support their varied audiences (including rural, low-income and tribal communities).
Considering whether to volunteer to be an NSF AISL reviewer? Here’s some information to help you decide if you are a good fit. Each year, the NSF Advancing Informal STEM Learning program looks for peer reviewers. New reviewers often have questions about the commitment to review. This slide deck is to help you understand what reviewers do and the commitments they make considering issues about time commitment, activities, money, etc.
The landscape for out-of-school STEM learning in Hong Kong is evolving. In 2017, to capture this change, the Croucher Foundation conducted a mapping exercise. This is the second annual mapping exercise conducted by the Croucher Foundation.
The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with almost 2,000 discrete activities covering a very wide range of science disciplines. This second report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out
How do afterschool programs view their local public libraries? Are they working with them, and in what ways? These are the questions that the Afterschool Alliance, along with its partners at the Space Science Institute’s National Center for Interactive Learning (NCIL) and the American Library Association, wanted to answer. Overall, our goal is to build bridges between the afterschool and library fields, so that both can share knowledge and resources to better serve our youth. While our work together has primarily focused on science, technology, engineering, and math (STEM) education through
As part of its overall effort to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program, seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. In alignment with these aims, the University of Washington will design and pilot an innovative leadership development program, NextGen Broadening Participation in ISE Professional Learning Program, to develop the leadership capacity of mid-career professionals, primarily from underrepresented groups in STEM, whose work focuses on broadening participation in informal STEM education (ISE). Unlike most existing ISE leadership models, this pathways project will employ a bottom-up, iterative design approach to engage program participants and garner new insights. Formative data and analysis will be used to better understand the broadening participation context, inform the model, and develop strategies and resources necessary to best support a more diversified next generation of ISE leaders. This pilot study is timely and significant. There is currently a substantial dearth of literature on the intersection between broadening participation and mid-level professional leadership development. Likewise, there are few comparable models in the current AISL portfolio. As such, the findings from this pilot will address critical gaps in the AISL portfolio and in the field, at large. It has the potential to markedly transform the capacity and impact of next generation ISE leaders. Over an eighteen-month period, this feasibility study will design, implement and test key aspects of the model to determine its potential for short and long term success. Using a competitive application process, twenty ISE mid-career professionals, who work primarily within broadening participation in STEM contexts, will be recruited to participate in the NextGen Broadening Participation in ISE Professional Learning Program. The year-long program includes four core components: (a) 4-day workshop, (b) four online webinars, (c) pilot projects carried out in participants' home institutions, and (d) poster presentations of projects at a national conference. A small cohort of faculty-mentors -- leaders from both research and practice in ISE broadening participation efforts -- will serve as participant mentors and play an integral role in the design and implementation of the program. Evaluative efforts will focus on documenting the efficacy of the design strategies (ex., recruitment, mentorship, social networking), the interests, needs, and professional growth of participants and the implications for broadening participation in STEM. The evaluation will be informed by data collected via interviews, surveys, focus groups, observations, content analyses of discourse, and participant deliverables. Formative and summative external evaluations will be conducted by the Garibay Group.
Informal science educators, researchers, and evaluators are interested in directly engaging with the challenges and opportunities of increasing diversity and meaningful intersectionality. The annual meetings of organizations like the American Alliance of Museums (AAM), the Association of Science and Technology Centers (ASTC), and the Visitors Studies Association (VSA) have consistently featured sessions relevant to these topics. NSF's goal of broadening participation means there are also project specific efforts currently underway to directly address methods and strategies for increasing diversity and inclusion in STEM. The Connected Audience Conference will provide an opportunity to engage in an international conversation that directly leverages this momentum and has the potential to motivate focused collective action among participants producing a greater impact on the field. This travel award supports an enhanced U.S. presence at the Connected Audience International Conference to be held in Vienna, Austria September 14-16, 2017. The premise of the meeting is that the role of museums and other cultural institutions in society is rapidly changing as these institutions strive to become more vital resources and partners in initiatives designed to support science learning, social development and growth in an increasingly science and technology-driven world. The goal for U.S. participation is to support established researchers in this area as well as mid-career professionals. The meeting is comprised of: thought leaders, case study presenters, poster presenters and general participants. Thought leaders will highlight theoretical and practical approaches to broadening participation designed to be provocative and stimulate discussion in the breakout sessions. Case study presenters will be paired to illustrate similarities and/or differences in project design, implementation, or outcomes. Structuring the case studies in this way supports conversations focused on cross-country and cross-institution synergies. The poster session presenters were selected and grouped to encourage productive and comparisons specifically exploring the potential for cross-cutting methods to more effectively engage with audiences. U.S. attendees supported under this travel grant represent those who are engaged in this work actively and positioned to continue making important contributions to the field. International participants represent a range of cultural institutions with the largest proportion attending from science centers and children's museums; however, all participants come because of their interest, concerns and expertise in issues related to equity and greater participation. The structure of the meeting will provide participants with significant time for iterative reflection and active discussion to make each session personally relevant and meaningful. This intentionally allows lots of room for pushback and even outright disagreement with any of the ideas proposed by the thought leaders, case study presenters, and poster session presenters. This award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences. The Connected Audience conference is designed to significantly contribute to an international conversation about the future of informal science education institutions in the learning ecologies of 21st century citizens. Through exploration of new findings and international cross-pollination of best practices, conference participants will be able to develop improved strategies for increasing and diversifying who participates in informal science education experiences as well as how they participate. A white paper written by the U.S. participants will be used to share findings and insights with the broader informal education field.
Merging art and science, "Self Reflected" aims to communicate the incredible complexity of the neural signaling in our brains that makes us who we are. The artists, Dr. Greg Dunn and Dr. Brian Edwards, invented a novel technique called reflective microetching to simulate the microscopic behavior of neurons in the viewer’s brain as they observe this work of art. "Self Reflected" is currently on display in the Your Brain exhibit at The Franklin Institute in Philadelphia. This summative evaluation study explores museum visitors’ behavior, reactions, and learning outcomes as they interact with
Multitouch tables and displays provide important benefits for users in museums and other public spaces. This report discusses the evolution of tangible-object interfaces on such displays and outlines ideas for further development of more compelling, intuitive, and effective user experiences.
This is the final report from the external evaluator of the project that created MedLab, an interactive learning experiences for Chicago area middle and high school students. This external evaluator's final report summarizes the outcomes and impacts of the five-year (2012-2017) funding compared to project objectives. The aim of the project was to use in person and online curricula, including a humanoid patient simulator (iStan®), to build interest in and knowledge of health sciences and health careers, with a particular focus on local community health concerns. An additional goal was to
DATE:
TEAM MEMBERS:
Christina Shane-SimpsonJohn FraserSusan HannahKin KongPatricia WardRabiah Mayas