This document is a list of culturally responsive research resources developed by the Researching the Value of Educator Actions for Learning (REVEAL) project.
Informal learning opportunities are increasingly being recognized as important for youth participation in authentic experiences at the intersection of science, technology, engineering, and math (STEM) (Dorsen, Carlson, and Goodyear 2006). These experiences may involve specialized equipment and dedicated time for learners to gain familiarity with the relevant scientific and engineering practices (i.e., designing experiments on their own, struggling to make sense of data, learning from their own mistakes and the results of peers), which often go beyond the classroom. However, the educators who
DATE:
TEAM MEMBERS:
Kathryn WilliamsonSue Ann HeatherlyVivian HoetteEva Erdosne TothDavid Beer
Have you ever been to a professional development (PD) session where you sat and listened to someone speak for hours—and likely got a bit bored? As teachers, we know that best practice is to encourage hands-on learning, but we forget to implement this strategy when creating PD experiences. Exploration Place (EP), the Sedgwick County Science and Discovery Center in Wichita, Kansas, partnered with eight rural school districts in neighboring Sumner County, threw out the traditional sage-on-a-stage paradigm, and tried something new.
DATE:
TEAM MEMBERS:
Jan LuthKimberly McDowellLaurel Zhang
Stephanie Spiris is a 12-year veteran teacher at George Washington High School in Denver, teaching courses in biomedical science (Figure 1). Last year, Spiris spent four weeks in a summer internship at Terumo BCT, a medical device company that focuses on blood processing for medical treatment and care. Decked in full lab gear and ready to learn, Spiris worked in a sterile lab, conducting projects that allowed her firsthand experience with tasks such as separating t-cells from blood and freeze-drying plasma.
The Center for the Advancement of Informal Science Education defines informal STEM education as “lifelong learning in science, technology, engineering, and math (STEM) that takes place across a multitude of designed settings and experiences outside of the formal classroom.” The design of an informal experience can vary widely. On one end of the spectrum are free-choice learning experiences, where participants determine what they want to learn, when they want to do it, and how and with whom they want to study. On the opposite end of the spectrum is nonformal learning, which includes any
The Exploratorium Teacher Institute (TI) is a teacher professional development center that offers comprehensive, multiyear professional learning institutes; classroom coaching and mentoring; and teaching tools to middle and high school science teachers. The TI staff is composed of a team of PhD scientists and veteran secondary science educators who work in concert to provide teachers with resources and experiences that develop the content knowledge and pedagogical skills necessary for teaching authentic science content through student-centered activities (McDermott and DeWater 2000). All of
Many people believe that both public policy and personal action would improve with better access to “reliable knowledge about the natural world” (that thing that we often call science). Many of those people participate in science education and science communication. And yet, both as areas of practice and as objects of academic inquiry, science education and science communication have until recently remained remarkably distinct. Why, and what resources do the articles in this special issue of JRST give us for bringing together both the fields of practice and the fields of inquiry?
The fields of science education and science communication share the overarching goal of helping non-experts and non-members of the professional science community develop knowledge of the content and processes of scientific research. However, the specific audiences, methods, and aims employed in the two fields have evolved quite differently and as a result, the two fields rarely share findings and theory. Despite this lack of crosstalk, one theoretical construct—framing—has shown substantial analytic power for researchers in both fields. Specifically, both fields have productively made use of
Recent decades have seen an increasing emphasis on linking the content and aims of science teaching to what the average citizen requires in order to participate effectively in contemporary society, one that is heavily dependent on science and technology. However, despite attempts to define what a scientific education for citizenship should ideally involve, a comprehensive set of key aspects has yet to be clearly established. With this in mind, the present study sought to determine empirically the extent of any consensus in Spain regarding the principal aspects of scientific competence that
DATE:
TEAM MEMBERS:
Angel Blanco-LopezEnrique Espana-RamosFrancisco Jose Gonzalez-GarciaAntonio Joaquin Franco-Mariscal
In the 1920s, John Dewey and Walter Lippmann both wrote important books examining whether the public was capable of playing a constructive role in policy, particularly when specialized knowledge was involved. This essay uses the Lippmann–Dewey debate to identify new challenges for science education and to explore the relationship between science education and science communication. It argues that science education can help foster democracy in ways that embody Habermas' ideal of the public sphere, but only if we as a field pay more attention to (1) the non-scientific frames and narratives that
In some senses, both science education and science communication share common goals. Both seek to educate, entertain and engage the public with and about science. Somewhat surprisingly, given their common goals, they have evolved as disparate academic fields where each pays little attention to the other.1 The purpose of this special issue, therefore, is an attempt some form of rapprochement—to contribute to building a better awareness of what each has to contribute to the other and the value of the scholarship conducted in both fields.
Abstract
In 2011, Donna DiBartolomeo and Zachary Clark enrolled in the Arts in Education Program at Harvard Graduate School of Education. Harvard Graduate School of Education is home to Project Zero, an educational research group comprising multiple, independently funded projects examining creativity, ethics, understanding, and other aspects of learning and its processes. Under the guidance of Principal Investigator Howard Gardner and Project Manager Katie Davis, the authors were tasked with developing a methodology capable of observing finegrained, objective detail in complete works of