This is a presentation about the ScienceCenter Netzwork, a network of science centers and museums in Austria. The presentation was a part of the Summit on Informal Science Networks at the Association of Science-Technology Centers annual conference in Albuquerque, NM.
One method for studying visitors in museums is to audiotape their conversations while videotaping their behavior. Many researchers inform visitors of such recordings by posting signs in the areas under scrutiny. An earlier study tested the assumption that visitors notice, read and understand posted signs (Gutwill, 2003). Interviews revealed that 75 percent of visitors leaving a recording area had read and understood the signs. This article describes our attempt at increasing this percentage by placing additional signs on the exhibit elements being used, as well as on the camera itself
One method for studying visitors in museums is to audiotape their conversations while videotaping their behavior. Many researchers inform visitors of the recordings by posting signs in the areas under scrutiny. This study tests the assumptions underlying that method—that visitors notice, read, and understand such signs. Signs were posted at the entrance to an Exploratorium exhibit which was being audio- and videotaped. Researchers interviewed 213 adult visitors as they exited the exhibit. The interviews revealed that 75 percent of the visitors had read and understood the sign. Of the 52
Living Liquid is a full-scale development project that will develop and research a new genre of science exhibit that engage visitors in inquiry with large scientific datasets through interactive visualizations. Building on findings from a prior pathways project, Living Liquid will develop three interactive visualizations on a multi-touch Viz Table with a tangible user interface. Each visualization will support visitors in the exploration of a dataset provided by the project’s science partners: 1) Plankton Patterns will show how the ocean is defined by regions of microscopic life using data from the MIT Darwin Project; 2) Ocean Tracks will reveal the “highways” large marine creatures travel with data from the TOPP project at Stanford University; and 3) Genetic Rhythms will follow the activity of marine creatures’ genes in response to environmental conditions based on data from the Center for Microbial Oceanography Research and Education (C-MORE). Through an iterative process of collaborative research and development among museum professionals, educational researchers, computer scientists, marine biologists, data artists and interaction designers, this project seeks to: (1) Advance public understanding of ocean ecosystems and large data inquiry skills through the development of a Viz Table. (2) Advance STEM professionals’ knowledge of how to engage the public in inquiry with visualizations through an educational research study. (3) Increase the capacity of STEM professionals (both ISE developers and research scientists) to develop visualizations through a collaborative development process that includes graduate student training and residencies.
This three-year research project will study the impact of science center staff facilitation strategies in the area of mathematics learning in a museum exhibit environment. The three main deliverables are: (1) Iteratively developing and refining a theoretical model of how staff facilitation can deepen and extend family mathematical discourse at interactive exhibits; (2) Rigorously testing key components of this model, including the relationship between staff facilitation and the nature of family mathematical discourse; and (3) Providing evidence and research-based tools to support PD efforts for informal STEM educators. The project will leverage the success of the NSF-funded Access Algebra project (DRL-0714634) to advance the field's understanding of socially mediated, informal math learning and identify effective, evidence-based facilitation approaches. The project's research will build from theoretical notion of sociomathematical norms (Yackel & Cobb, 1996), which is currently based on classroom research. A key element of the project will be to determine whether and how, the norms can be applied to informal learning environments. The first phase of the project begins with a qualitative, design-based research (DBR) study to develop a theoretical model of staff-facilitated family math learning, including staff facilitation strategies that support family mathematical discourse and contextual factors that influence that discourse. In the second phase of the project, the team will use an experimental approach to rigorously test the staff facilitation model developed during Phase 1. This mixed-method design will allow the team to both study the complexities of informal math learning and rigorously test causal connections between staff facilitation and the level of family math discourse. Finally, the project staff will provide tools to support PD efforts for informal STEM educators across the country.
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
This research project led by the Exploratorium will use a combination of tracking and timing, cluster analysis, and focus groups to seek to answer the research question: To what extent and in what ways do female-responsive designs more effectively engage girls at STEM exhibits? This project addresses the need for more research in this area by pioneering the study of potential female-responsive design (FRD) principles for exhibits across a wide variety of STEM topics and exhibit types. This project includes four phases that will build from the work of the PI that developed an initial Female-Responsive Design (FRD) Framework regarding female engagement and learning in STEM -- based on extensive literature review and practitioner interviews. This project will expand on and validate this FRD Framework, with the ultimate goal of having a set of criteria for female-responsive designs (FRD) that effectively engage girls at STEM exhibits. The four phases of the research project are: Phase 1: Track 1000 boys and girls across three institutions using over 300 physics, engineering, and math exhibits to identify which exhibits engage boys and girls equally, and which are less engaging for girls. Phase 2: A panel of experts and girl advisors identify additional female-responsive design principles, expanding on those identified to date in literature and practice. Phase 3: Combining results from the first two phases, the third phase employs statistical analyses to reveal the most effective combinations of design principles for engaging girls across a variety of exhibits. Phase 4: This qualitative phase conducts focus groups with girls to explore how the final FRD Framework works to better engage them, and how their learning differs at exhibits that exemplify the principles in the Framework.
The Exploratorium, in partnership with Qualcomm, proposes to develop and test a highly accurate indoor positioning system (IPS) at full museum scale. Such a system would increase the feasibility and power of whole-visit research studies and open up opportunities for using IPS to support new and innovative informal STEM learning experiences. Within 3-5 years, museums will likely possess infrastructures capable of easily and effectively integrating IPS. The Exploratorium's project will generate early knowledge about using this technology for developing innovative programmatic strategies and for improving research and evaluation of STEM learning in museums. Program activities include developing processes for creating and updating indoor maps; testing IPS as a tool for program development and delivery; prototyping a research data management system; and the dissemination project findings.
This research and development project would inform and engage audiences (especially middle school age girls) about the fundamental research under investigation at the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. A research plan and summative evaluation will fill a gap in what is known about the public's perception and understanding of the LHC/particle physics and include studies on girl's interest and engagement. Deliverables include a 40 minute giant screen film (3D/2D), full dome planetarium film, an interactive theater lobby exhibit, website, mobile app, materials and professional development workshops for educators. The giant screen film will use scientific visualizations and artistic interpretation to reveal compelling scientific stories recreating conditions following the Big Bang and the discovery in 2012 of the Higgs boson. CERN is providing unprecedented access to the collider and particle detectors including filming inside the 17 mile long underground tunnel while it is closed for upgrades in 2013-2014. There are 8 partner science museums (7 with planetariums) that will show the film/exhibit and serve as sites for research, evaluation, and outreach to underserved audiences ( Adventure Science Center, Carnegie Science Center, The Franklin Institute, Liberty Science Center, OMSI, Orlando Science Center, the Smithsonian, and the St. Louis Science Center). Additional distribution/marketing channels include giant screen theaters, planetariums, DVD, and social social media. Launch is targeted for 2016. Learning outcomes will focus on increasing awareness and interest in the LHC and increasing young people's engagement and excitement about the nature of scientific discovery. The research on girl's engagement and interest in physics will fill a gap in field. The project deliverables are projected to reach large audiences through national distribution of the giant screen film, the planetarium show, the exhibit, 3D/2D Blu Ray and DVDs, and access on computers, tablets, and other mobile devices.
This grant supports a workshop focused on catalyzing STEM education R & D in Sri Lanka and in the U.S. through networking and international collaboration. The workshop is a collaboration of the US Association of Science-Technology Centers (ASTC) and the National Science Foundation of Sri Lanka. Its focus is for ASTC to share its wealth of expertise with Sri Lanka in the creation of a science center in Colombo that will engage its people in an accessible science-learning environment and provide its youth with grounding in the scientific concepts and practices. The three day workshop to be held in Colombo, Sri Lanka, will engage these experts in the discussion and co-creation of a plan for a science center to be built in Sri Lanka, and to consider how to develop an ongoing relationship between informal STEM educators in the US and STEM educators in Sri Lanka. The workshop will cover subjects critical to the development of an effective and successful science center, including: (1) Inquiry-based learning and the development of effective exhibits and programs, (2) Evaluation tools and techniques, (3) Local scientific knowledge and expertise that can influence planning and programing, (4) Developing effective outreach programs, (5) Public Engagement with science and society issues, and (6) Managing a science center. While using the development of the science center as a focus for the meeting, the workshop will also initiate discussions between STEM educators in the South Asia region and the United States, with the goal of developing a long-term relationship between STEM educators in the South Asia region and the United States. One or more of the US speakers and the invited US doctoral student will explore and identify new research questions on STEM education and the role of science centers as a new model for improving human resource capacities in STEM in developing countries. The workshop outcome should also advance future international collaborations and inform efforts to serve immigrant populations from South Asia in the US. This award is designated as a Global Venture Fund Award and is being co-funded by NSF's Office of International Science and Engineering.
Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California. Project partners include the Rueben H. Fleet Science Center and the University of California, San Diego (UCSD). The project's goals are to support teachers in the development of informal science education opportunities for English learners, partner with students in grades 7-12 to create activities and exhibits, deliver student-produced products to community members, and sustain and disseminate the activities through the development of web-based teacher tools. The teachers will work with informal science education experts, STEM professionals, and undergraduate students to develop and implement the program lessons with their 7-12 grade students. The activities and exhibits designed for community audiences will be used in the Imperial Valley Discovery Zone, slated for completion in fall 2013. Special emphasis will be placed on understanding English scientific word frames and science content specific vocabulary to help ELL students express complex scientific concepts in English. The project deliverables in this pilot project include a comprehensive teacher professional development strategy, student-developed informal science activities and exhibits, a project website, and multiple teacher resources (lesson plans, how-to guides, training materials, and social networking tools). Teachers will receive 45 hours of professional development during the summer with an additional 20 hours of support provided during the school year. UCSD's Jacob's School of Engineering will provide training on solar energy micro-grids using a micro-grid observatory to be located in Imperial Valley. English language development training will be provided by the University of California's Professional Development Institute (UCPDI) and address the role of language objectives in scientific conceptual knowledge and language development; using science and language to improve classroom questioning/discussion; and teaching academic language to English learners. The informal science education component of the training provided by the Fleet Science Center will address topics such as questioning strategies, scientific reasoning frameworks, communicating science to public audiences, and learning "high level" science content using hands-on approaches. The project design builds on research which supports an active learning approach that mirrors scientific practice and is one of the strengths of informal science learning environments. The question to be addressed by the USA Project is: "Can informal STEM activities with embedded English Language development strategies assist English learner students to increase their English language competency and their interest in STEM subjects?" The PI seeks to identify the impact that teachers have on guiding students in inquiry-based informal STEM education, evaluate the academic outcomes for students, and measure changes in community interest, understanding, and attitudes towards STEM and STEM occupations. The USA Project is designed to reach approximately 200 underserved students and will promote the participation of at least 400 additional students, parents, and other rural community members. It is anticipated that this project will result in the development of a model for teacher-led informal STEM education, increased STEM learning opportunities for the community, and the development of a network of educational institutions that helps to bridge formal and informal STEM learning and learning environments.
This report is the result of a task force convened between 2008 and 2009 by the Institute of Museum and Library Services (IMLS) to identify the new contexts facing libraries and museums, such as the evolution of the global economy and the need for 21st century skills. The report is designed to help decision makers and leaders in libraries and museums envision the futures of their institutions, respond to future needs, and build awareness among policymakers about museums' and libraries' key roles in the nation's learning system. The report also provides a self-assessment tool for libraries and
DATE:
TEAM MEMBERS:
Institute of Museum and Library ServicesInstitute of Museum and Library Services