Skip to main content

Community Repository Search Results

resource project Media and Technology
Project Enhanced Science Learning (PESL) offers learning partners opportunities to engage in authentic scientific inquiry through apprenticeship. Such inquiry is often enabled by dynamic interactions among learning partners in physical proximity. Yet scientific and business practice using Internet and broadband services recognizes that not all partners necessary to an interaction can be co-located. Our vision uses new technologies to extend the collaborative "reach" of PESL to include diverse expertise among remote learners, teachers, and scientists. This work, in atmospheric sciences, extends collaborative media beyond asynchronous text-only email to shared workspaces and two-way audio/video connections that allow for collaborative visualization of science phenomena, data, models - What You See Is What I See (WYSIWIS). Tools for local- and wide-area networked learning environments will enable highly interactive, media-rich communications among learning partners. Research on these learning architectures will provide pedagogy and social protocols for authenticating the science learning experience in classrooms and other spaces. Greater motivation to learn and enhanced science learning in terms of more valid, performance assessments should result from students' participations. The next decade brings widespread, networked multi-media interpersonal computing. This project will provide a blueprint to inform the effective use of interpersonal collaborative media for science education.
DATE: -
TEAM MEMBERS: Roy Pea Elliot Soloway Louis Gomez
resource evaluation Public Programs
This report provides an overview of the findings from the formative evaluation of the RISE Public Communication Internship conducted at the Museum of Science in January from January 20-23, 2009. The internship was created as a result of a partnership between the Strategic Projects Department at the Museum of Science and the NSF Nanoscale Science and Engineering Center headquartered at Harvard University, and was supported by a sub-award from the Center, to the Museum of Science. The program was overseen by MOS PI Carol Lynn Alpert. The goals for the internship as provided by the intern
DATE:
resource research Professional Development, Conferences, and Networks
This is a two-session science communication workshop targeted to undergraduate students participating in university-based research programs such as NSF Research Experience for Undergraduates (REU) program, which typically occur during the summer months. University faculty and science museum staff integrate the sessions into the research program curriculum to enhance the students’ science communication skills, with an emphasis on professional oral, powerpoint, and poster presentations. Each session takes a half-day, but they can be shortened.
DATE:
TEAM MEMBERS: Museum of Science Carol Lynn Alpert
resource evaluation Professional Development, Conferences, and Networks
The Museum of Science partnered with the Center for High-rate Nanomanufacturing to create a sequence of professional development experiences in science communication and hands-on learning for graduate students and post-docs. The Sharing Science Workshops were intended to help graduate students who work with the CHN program to improve their abilities to present their research to a variety of scientific and nonscientific audiences. The sequence included a half-day "Sharing Science" workshop, a half-day guided "Practicum" with museum visitors, and optional participation in NanoDays events at MOS
DATE:
TEAM MEMBERS: Donahue Institute Research and Evaluation Group
resource project Public Programs
Research shows that participation and interest in science starts to drop as youth enter high school. This is also the point when science becomes more complex and there is increased need for content knowledge, mathematics capability, and computer or computational knowledge. Evidence suggests that youth who participate in original scientific research are more likely to enter and maintain a career in science as compared to students who do not have these experiences. We know young people get excited by space science. This project (STEM-ID) is informed by previous work in which high school students were introduced to scientific research and contributed to the search for pulsars. Students were able to develop the required science and math knowledge and computer skills that enabled them to successfully participate. STEM-ID builds on this previous work with two primary goals: the replication of the local program into a distributed program model and an investigation of the degree to which authentic research experiences build strong science identities and research self-efficacies. More specifically the project will support (a) significant geographic expansion to institutions situated in communities with diverse populations allowing substantial inclusion of under-served groups, (b) an online learning and discovery environment that will support the participation of youth throughout the country via online activities, and (c) opportunities for deeper participation in research and advancement within the research community. This project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and understanding of, the design and development of STEM learning in informal environments. STEM-ID will serve 2000 high school youth and 200 high school teachers in afterschool clubs with support from 30 undergraduate and graduate students and 10 college/university faculty. Exploratory educational research will determine the broad mechanisms by which online activities and in-person and online peer-mentor teacher-scientist interactions influence science identity, self-efficacy, motivation, and career intentions, as well as a focused understanding of the mechanisms that influence patterns of participation. Youth will be monitored longitudinally through the first two years of college to provide an understanding of the long-term effects of out-of-class science enrichment programs on STEM career decisions. These studies will build an understanding of the best practices for enhancing STEM persistence in college through engagement in authentic STEM programs before youth get to college. In addition to the benefits of the education research, this program may lead participants to discover dozens of new pulsars. These pulsars will be used for fundamental advances such as for testing of general relativity, constraining neutron star masses, or detecting gravitational waves. The resulting survey will also be sensitive to transient signals such as sporadic pulsars and extragalactic bursts. This project provides a potential model for youth from geographical disparate places to participate in authentic research experiences. For providers, it will offer a model for program delivery with lower costs. Findings will support greater understanding of the mechanisms for participation in STEM. This work is being led by West Virginia University and the National Radio Astronomy Observatory. Participating sites include California Institute of Technology, Cornell University, El Paso Community College, Howard University, Montana State University, Penn State University, Texas Tech University, University of Vermont, University of Washington, and Vanderbilt University.
DATE: -
TEAM MEMBERS: Sue Ann Heatherly Maura McLaughlin John Stewart Duncan Lorimer
resource project Media and Technology
The Self-Reliance Foundation (SRF) Conociendo Tu Cuerpo (Know Your Body) Hispanic Community Health Sciences Education project is an initiative designed to introduce Hispanic students and families to biomedical science and health education resources, and increase their participation levels in these fields. The educational goals of the project are to: (1) Encourage Hispanic undergraduate students to pursue careers in biomedicine and science through a mentoring program at the university level; (2) Inspire an interest in biomedical science among Hispanic elementary-age students and parents through community outreach activities; (3) Inform Hispanic parents about biomedical science education standards and academic requirements for pursuing biomedical and science related careers; and (4) Inform and inspire Hispanic students and their families about the biomedical sciences and related careers through a series of daily nationally broadcast Spanish-language radio capsules, and a nationally syndicated Spanish newspaper column. Conociendo Tu Cuerpo (Know Your Body) includes several key components: A model, Washington, D.C., area coalition of informal science, health, community, education, and media organizations that will publicize and provide hands-on health science activities at community festivals and other community settings; Hispanic undergraduate student health-science fellows to be trained and provided experience in facilitating health science activities; and nationally broadcast Spanish-language radio capsules that will cover topics in areas of biomedicine, research, education, and health-science careers. Parents and students will be able to access additional information about biomedical science opportunities and Hispanic role models in the biomedical sciences through the project's Conociendo Tu Cuerpo website and the bilingual 800 telephone help line promoted by 147 participating radio stations and 102 newspapers nationwide. The project will be supported at the national level through collaboration with the Hispanic Radio Network and the Pacific Science Center. The Washington, D.C., collaborative will include the Capital Children's Museum, local Spanish language radio stations, area universities, and health and community organizations. Development Associates, the largest American education and evaluation consulting corporation, will evaluate the project.
DATE: -
TEAM MEMBERS: Robert Russell Liza Fuentes
resource research Informal/Formal Connections
In this paper, we discuss our approach to teacher-researcher collaboration and how it is similar and different from other models of teacher collaboration. Our approach to collaboration employed design experimentation (Brown, 1992; Design Based Research Collective, 2003) as a central method since it yields important findings for teachers’ pedagogical practices and contributes to the research literature on teaching and learning. We use three key moments in our collaborative practice to highlight how our work impacted student thinking and learning and involved our own shifting identities as
DATE:
TEAM MEMBERS: Leslie Herrenkohl Keiko Kawasaki Lezlie Dewater
resource research Media and Technology
With the success of open access publishing, Massive open online courses (MOOCs) and open education practices, the open approach to education has moved from the periphery to the mainstream. This marks a moment of victory for the open education movement, but at the same time the real battle for the direction of openness begins. As with the green movement, openness now has a market value and is subject to new tensions, such as venture capitalists funding MOOC companies. This is a crucial time for determining the future direction of open education. In this volume, Martin Weller examines four key
DATE:
TEAM MEMBERS: Martin Weller
resource research Media and Technology
While industries such as music, newspapers, film and publishing have seen radical changes in their business models and practices as a direct result of new technologies, higher education has so far resisted the wholesale changes we have seen elsewhere. However, a gradual and fundamental shift in the practice of academics is taking place. Every aspect of scholarly practice is seeing changes effected by the adoption and possibilities of new technologies. This book will explore these changes, their implications for higher education, the possibilities for new forms of scholarly practice and what
DATE:
TEAM MEMBERS: Martin Weller
resource research Media and Technology
One challenge in scaling up effective educational programs is how to adjust implementation to local contexts. One solution that the authors Penuel, Fishman, Cheng, and Sabelli propose is “design-based implementation research,” (DBIR) in which researchers and practitioners collaboratively identify problems and strategies during implementation while learning from this process to support innovations in new contexts.
DATE:
TEAM MEMBERS: Jean Ryoo
resource research Informal/Formal Connections
In order to attract and retain underrepresented student groups (USGs) who aspire to major in STEM fields, educators recognize that science and math instruction must improve and also develop students’ non-cognitive and social-emotional skills. Foremost in that effort is Xavier University of Louisiana, a historically black and Catholic university located in the heart of New Orleans. Throughout the past thirty years, Xavier compiled an extraordinary record as a top producer of African Americans who receive bachelor’s degrees in biology, chemistry, and physics. Although Xavier enrolls only
DATE:
TEAM MEMBERS: Mariana Haynes
resource research Informal/Formal Connections
This longitudinal study examined factors that contribute to the persistence of underrepresented racial minority (URM) undergraduates in STEM fields. The primary source of data came from the Cooperative Institutional Research Program’s 2004 The Freshman Survey (TFS) and 2008 College Senior Survey (CSS). The sample included 3,670 students at 217 institutions who indicated on the TFS that they intended to major in a STEM field, 1,634 of whom were underrepresented minority (URM) students. Findings indicate that Black and Latino undergraduates were significantly less likely to persist in STEM
DATE:
TEAM MEMBERS: Mitchell Chang Jessica Sharkness Sylvia Hurtado Christopher Newman