In this article, science center and museum professionals from around the world share ways that they are engaging visitors in hands-on innovation. Work from the following organizations are discussed: Exploratorium, Discovery Center of Idaho, Lawrence Hall of Science, Iridescent, Conner Prairie Interactive History Park, Ideum, Discovery Place, Ontario Science Centre, Bootheel Youth Museum, Science Centre Singapore, Children's Museum of Phoenix, Discovery Museums (Acton, MA), Discovery Center of Springfield, Missouri, Museum of Science, Boston, Questacon--The National Science and Technology
This pathways project will study how audiences in public spaces, in this case those in a museum setting, relate to and make sense of large data displays. The project is preliminary to development of a traveling, hands-on exhibition enabling users to create and utilize representations of big data displays such as maps and charts. As the test case, the project will use science maps that provide an overview of science generally and specific areas of STEM, charting and exploring the history and future of science and technology. The data collection portion of the project will take place at the New York Hall of Science, the Marian Koshland Science Museum, COSI in Columbus, Ohio, and WonderLab Museum in Bloomington, Indiana. The project will create a foundation for the design of museum exhibits and educational programs that teach museum visitors how to explore, engage and make better sense of big data. The project is potentially transformative because big data is becoming ubiquitous and making sense out of large data displays is necessary in order to understand big data sets.
The University of Southern California (USC) will build on prior work to test a robust model for assessing player content engagement and social interactions within an augmented reality game (ARG). In partnership with No Mimes Media, USC will use machine learning algorithms to make automated player inferences to customize game play. The content focus of the game will span a range of STEM disciplines, with a special emphasis on earth science content and scientific investigation & experimentation reasoning. High school youth from underserved communities in Los Angeles will be recruited to participate in the endeavor. This pathways project will use various "rabbit hole" techniques to attract freshmen and sophomore students from partner charter schools to the online game. The rabbit hole strategies may include cryptic posters, inquisitive signs, & SQR codes strategically placed in plain and open view of the target group. The game will be fully accessible to the target group online. During the ARG experience, youth players will encounter STEM concepts and scientific problems. Antagonistic characters will promulgate scientific misconceptions and nonscientific reasoning and challenge players to employ their scientific knowledge and skills to level-up, gain badges, and move through the game. As game play persists, machine learning algorithms will gather data on the players learning competencies and social interactions within the game. These data will be aggregated and analyzed to assess learning and interactions within the ARG environment. Additional analyses will be conducted by the mixed methods approach the external evaluation group, CRESST, will employ for the project formative and summative evaluations. Approximately 300 youth, within the target grade levels, are expected to participate in the gaming experience. However, given that access to the game and assessment tools will expand beyond the target group, the potential reach of the project could be much greater. Further, the stated aim of the project is not only to produce a scalable model for broad implementation but it also endeavors to provide puppetmasters with research and assessment tools to create more individualized experiences and improved learning outcomes for players within ARG environments.
DATE:
-
TEAM MEMBERS:
Yu-Han ChangJihie KimRajiv Maheswaran
Informal Community Science Investigators (iCSI) creates a network of four geographically diverse informal science institutions working together on strategies to engage youth ages 10-13 through location based augmented reality (AR) games played on smartphones. These high-interest, kid-friendly games will be used by families visiting the institutions and by youth who enroll in more intensive summer camp programs. Using AR games, participants will engage in playful but scientifically-grounded investigations drawing on each institution's research, exhibits, and natural spaces. For example, a botanical garden might engage young visitors through AR games with themes related to native and invasive species, while a zoo might create a game experience focusing on illegal wildlife trade. Participants in the iCSI summer camp program will have more intensive experiences, including work with the host institution's scientists, opportunities to develop original augmented reality games, and experiences with game-related service learning and citizen science programs. For both target groups (families and campers), the location specific games build understanding of both the institution's mission and the broader realm of scientific research and application. The project will test the notion of participants as "learner hero," the link between game play and the individual's development of competency, autonomy and the relationship to real world experience, in this case through community action on the subject of the game developed. To that end, participants will be encouraged to extend their involvement through related investigations on site and participation in community activities and projects that can be done at home. Social media tools such as Facebook and web sites managed by the host institutions will provide recognition for this extended engagement, helping participants maintain ties to the program. Additionally, program resources provide assistance to adult family members in nurturing and sustaining youth interest in STEM activities and careers. A major effort of the project will be development of a new software infrastructure called TaleBlazer for the augmented reality game that will enable teachers and students to develop their own game that incorporates real data collection and scientific model building. The new platform will enhance the game play platform MITAR developed with NSF funding.
This project takes advantage of the charismatic nature of arachnids to engage the public in scientific inquiry, dialogue, and exploration. The project has two specific programs: (1) The development, implementation, and assessment of an informal museum event entitled 'Eight-Legged Encounters' which now has more than 25 associated activity stations. These activities encompass stations relating to (a) classification and systematics (e.g., 'What is an Arthropod', 'Create a Chelicerate', and 'Assemble an Arachnid'), (b) spider-specific stations focused on silk (e.g., 'Build a Burrow', 'Cribellate vs. Ecribellate Silk', 'Weave a Web', and 'Catch a Moth'), and (c) research related stations (e.g., 'Microscope Madness' and 'Community Experiment'). In addition, there is a stand-alone module entitled the 'Path of Predators' that includes an activity booklet and eleven stations that walk participants through the eleven living arachnid orders. Each stations has original artwork backdrops, clay sculptures, trading cards, and collectible stamps (participants place stamps on a phlylogenetic tree depicting the current hypothesis of evolutionary relationships among the eleven orders). Most stations have live animals and prizes are given to participants that complete their stamp booklet. 'Eight-Legged Encounters' has been hosted at the Nebraska State Museum (Morrill Hall) twice, with record-breaking attendance (>800 people in
DATE:
-
TEAM MEMBERS:
University of Nebraska-LincolnEileen Hebets
This article deals with a pioneering project currently being developed, namely, the Exhibition on Testing and Measurement. This interactive traveling exhibition will be presented in science museums in Israel, the United States, and other countries. It has been conceived as an innovative means of familiarizing the public with educational measurement concepts and scientific principles. The exhibition will initiate and encourage a dialogue regarding the social aspects of testing. Science centers and museums can play a vital role in helping to forge a more authentic relationship between science
DATE:
TEAM MEMBERS:
Avi AllaloufDiana Alderoqui-Pinus
resourceprojectProfessional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
In January 2012, New York Hall of Science (NYSCI) hosted Design-Make-Play: Growing the Next Generation of Science Innovators. The two-day conference brought together leaders of schools, community-based programs, research and development organizations, the funding community, universities, government and business. They gathered at NYSCI to assemble evidence supporting the belief that designing, making and playing can create new pathways into science, technology, engineering and math (STEM), particularly among children. A core argument of Design-Make-Play is that informal learning centers like
One of the most recent additions to the range of Immersive Virtual Environments has been the digital fulldome. However, not much empirical research has been conducted to explore its potential and benefits over other types of presentation formats. In this review we provide a framework within which to examine the properties of fulldome environments and compare them to those of other existing immersive digital environments. We review the state-of-the-art of virtual reality technology, and then survey core areas of psychology relevant to experiences in the fulldome, including visual perception
DATE:
TEAM MEMBERS:
Simone SchnallCraig HedgeRuth Weaver
The theory of evolution by natural selection has revolutionized the biological sciences yet remains confusing and controversial to the public at large. This study explored how a particular segment of the public - visitors to a natural history museum - reason about evolution in the context of an interactive cladogram, or evolutionary tree. The participants were 49 children aged four to twelve and one accompanying parent. Together, they completed five activities using a touch-screen display of the phylogenetic relations among the 19 orders of mammals. Across activities, participants revealed
DATE:
TEAM MEMBERS:
Andrew ShtulmanIsabel Checa
resourceprojectProfessional Development, Conferences, and Networks
Earth to Sky (ETS) is an exciting, growing partnership between the National Aeronautics and Space Administration (NASA), the National Park Service (NPS) the US Fish and Wildlife Service (USFWS), and the University of California, Berkeley. Together we work to enable and encourage informal educators to access and use relevant NASA and other science, data, and educational products in their work. The project is co-lead by NASA Earth Science Education, in partnership with NPS, USFWS and U.C. Berkeley. Earth to Sky has been funded by a series of NASA grants and the Earth Science Division of NASA's Science Mission Directorate. Mission Statement: Actively foster collaborative work between the science and interpretation/education communities of NPS, USFWS and NASA, to ultimately enrich the experiences of millions of visitors to America’s National Parks, Refuges and other protected areas. There are two, closely linked components to ETS: Professional Development, and an active Community of Practice. We use a collaborative approach to interagency professional development, bringing scientists and educators together in collegial learning environments. Our training events emphasize development of plans for use of course content in participants’ work environment. We provide face-to-face, distance-learning and blended learning opportunities. Since 2008 the effort has focused on climate change science and communication. However, we maintain connections with other science content areas, including comparative planetology and the Sun-Earth connection. We have also developed, and continue to nurture and expand, a community of practice that uses the science and communication skills and capabilities of each of the partners to enrich public engagement in natural and cultural heritage sites across the United States. Impact: 86 course participants from a total of 3 ETS courses have in turn reached well over 4 million visitors to parks and refuges with content derived from ETS professional development. Archives of almost all ETS presentations and examples of participants’ work are available to registered members of our website http://www.earthtosky.org Registration is free and open to anyone with an interest in science communication. We also maintain a listserv of nearly 500 individuals, which provides periodic updates on science, professional development opportunities and other news of relevance to the community.
This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with National Science Education Standards (NSES) (1996) and A Framework for K-12 Science Education: Practices, Crosscutting Concepts and Core Ideas (2011). The model has since been used in other university courses and professional development workshops for elementary, middle school, and high school teachers. Learners experience the
DATE:
TEAM MEMBERS:
Barbara SpectorRuth BurkettCyndy Leard