In this paper, we contend that what to teach about scientific reasoning has been bedeviled by a lack of clarity about the construct. Drawing on the insights emerging from a cognitive history of science, we argue for a conception of scientific reasoning based on six 'styles of scientific reasoning.' Each 'style' requires its own specific ontological and procedural entities, and invokes its own epistemic values and constructs. Consequently, learning science requires the development of not just content knowledge but, in addition, procedural knowledge, and epistemic knowledge. Previous attempts to
This video presents reflections on SCIENCES: Supporting a Community’s Informal Education Needs—Confidence and Empowerment in STEM. SCIENCES brought together Eden Place Nature Center and the Chicago Zoological Society to collaboratively support environmental conservation and lifelong scientific learning in the Fuller Park neighborhood of Chicago.
The SCIENCES project began in 2013 and focused on adapting existing educational programs into a suite of environmentally focused science learning opportunities for professional, student, and public audiences in the Fuller Park neighborhood
The summative evaluation documents and articulates what SCIENCES has improved or changed, and in what ways. The final design of the summative evaluation was based on findings from the front-end and formative evaluations, including using participatory evaluation techniques to engage community members in discussing their experience with the programs and assessment of community needs and assets at the close of the project.
The goal of the summative evaluation was to address discrete program impacts in the context of the project, as well as the cross-program impact of providing a thematically
In The Nature of Community: SCIENCES, we share the lessons learned from an innovative partnership designed to leverage the strengths of two nonprofit organizations—a large cultural institution and a smaller, deeply-rooted community-based organization, both of which offer informal science education expertise.
You’ll read first-hand reflections of how staff members, community leaders and members, children, and adults experienced this partnership: the expectations, surprises, challenges, successes, and lessons learned. We hope the description of this partnership inspires other organizations to
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Museum of Science, Boston (MOS) and Boston University (BU) will conduct a Pilot and Feasibility Study project that leverages the current Living Laboratory (LL) model and expand it to engage high school students (teens) in experimental psychology research, science communication and science education activities. In LL, which is now an extensive network of museums and university researchers across the country, scientists and museum staff collaborate to engage children in studies on the museum floor and educate caregivers about the research. Multi-site implementation and evaluation of LL has also documented positive impacts for undergraduate researchers. Many sites are eager to extend these benefits to high school students by engaging them as practitioners within the model and by providing them with opportunities to engage in current research, education and communication, thereby helping to foster stronger youth identities with science and its applications in society. This project expands a ten-year LL partnership between MOS and BU to: 1) pilot a program in which high school students both conduct scientific research and engage the public in learning about science; 2) explore strategies for museums and universities to collaboratively engage, support and mentor high school students in science research, communication and education activities; 3) document curricular, other programmatic, and evaluation materials; and 4) convene professional participants to provide feedback on pilot materials, and assess the viability of implementing similar programs at additional sites. Guided by developmental evaluation, these activities will generate knowledge for the field, and act to increase professional capacity to integrate experiences for teens at multiple LL sites in future projects. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This article focuses on the efforts of the Collaborative for Early Science Learning (CESL), a group of six museums led by the Sciencenter in Ithaca, New York, that partner with their local Head Start programs to provide training for teachers and opportunities for family engagement. These efforts address the gap between children’s readiness to explore science through everyday experiences and adults’ support. CESL believes that hands-on professional development (PD) opportunities for teachers and families can reduce adult discomfort with facilitating science programming and increase their
In partnership with the Center for Research on Lifelong STEM Learning, we completed year one of a multi-year study on the impact of the Curiosity Machine model on students. There is a specific focus on linking dosage to impact. The constructs that were explored were:
* STEM identities (e.g., how students think of themselves in science)
* “Possible selves” (see STEM as a component of their own career or future learning pathways, e.g., course taking in STEM areas)
* Self-efficacy (e.g., beliefs in their abilities in STEM subject areas, self-perception of confidence in STEM)
* Interest in
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.
This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
This article discusses the Youth in Science Action Club (SAC), which uses citizen science to investigate nature, document their discoveries, share data with the scientific community, and design strategies to protect the planet. Through collaborations with regional and national partners, SAC expands access to environmental science curriculum and training resources.
DATE:
TEAM MEMBERS:
Laura HerszenhornKatie LevedahlSuzi Taylor
To address the need for STEM reform in K-12 schools, this article describes the design and implementation of a rigorous, interdisciplinary science and research program (ISR) in two local high schools (HS-S and HS-H). The ISR, adapted from the successful School for Science and Math at Vanderbilt program, provides seven courses over four years that focus on the development of critical thinking skills and the ability to construct and perform hypothesis-driven research projects. The courses are co-taught by a science teacher (masters or doctoral level) and a Ph.D. scientist. Overall, students in
DATE:
TEAM MEMBERS:
Jennifer A. UfnarVirginia L. Shepherd
Dr. Ann Chester, Director of the Health Sciences and Technology Academy (HSTA) in West Virginia was looking for professional researchers interested in working with HSTA's high school-aged participants through community-based participatory research (CBPR) projects. Dr. Alicia Zbehlik, with the Dartmouth Institute for Health Policy & Clinical Practice in New Hampshire, needed to further her research in knee osteoarthritis to support a pilot intervention in her target population. The two met, saw potential benefits to both organizations in forming a partnership, and agreed to undertake a one-year
DATE:
TEAM MEMBERS:
Paul Luis SicilianoBethany L. HornbeckSara HanksSummer L. KuhnAlicia J. ZbehlikAnn L. Chester
The Society for Science and the Public’s Advocate Grant Program provides selected Advocates with funding, resources, and information. Advocates include classroom teachers, school and district administrators, university professors, and informal science educators in community-based programs. The role of the Advocate is to support three or more underserved middle or high school students in the process of advancing from conducting a scientific research or engineering design project to entering a scientific competition. Advocates receive a stipend of $3,000; opportunities to meet and interact with