NASA STEM Educational Project for the Goddard Greenbelt and Wallops Visitor Center and the Independent Verification and Validation (IV&V) Facility Education Resource Center is a project designed to provide high value STEM education activities. The Goddard Office of Education is fortunate to have three facilities (Greenbelt, WFF and IV&V) that coordinate to produce high impact, sustainable results using NASA’s unique capabilities for their education customers which include visitors, K-16 students, educators and science centers, museums and planetariums. The Greenbelt project elements will take our current Visitor Center in the direction of the Science Education and Exploration Center (SEEC). This project includes utilizing the GeoDome portable planetarium with underserved populations, expanding STEM engagement programs held at the Visitor Center and growing the network of museum partners that implement programs through an experiential workshop held in September 2012. This project also includes support for a summer experience for students and educators for the SEEC held July 2012. The WFF elements of the project include developing educational exhibits and information on NASA’s WFF missions and launches. A presentation on the LADEE orbital moon mission is being developed for the Science on a Sphere. Content is being developed for a kiosk with hands-on exhibits for students that inspire them in STEM fields and based on NASA’s Suborbital and Orbital missions at Wallops Flight Facility. The IV&V elements leverage past NASA and Visitor Center investments, content, and programs. Using the IR camera enables sharing science and engineering information about missions such as the James Webb Space Telescope to a broader audience. IV&V is using the Space Weather kit to train educators and students on space weather forecasting. Having IV&V as a partner allows us to target rural underserved populations with our programs.
Earth from Space highlights state-of-the-art NASA technology, in particular, the suite of Earth observing satellites orbiting our planet, the data they collect, and how people are using these data for research and applications. Participants learn how NASA EOS data is collected through remote sensing systems, recognize the connection between this data and the area in which they live, and recognize the relevance and value of NASA data for understanding changes in the Earth related to where they live. The project informs K–12 students and lifelong learners of our increasingly advanced technological society and prepare students to enter the STEM-related workforce with content in oceanography, geology, climatology, glaciology, geography, and meteorology. Content is presented through hands-on exhibits and dynamic demonstrations using spherical display systems at OMSI’s main museum location and through a travelling program at rural libraries, schools, and other outreach venues throughout Oregon.
This project will expand the functions and applications of FieldScope, a web-based science information portal currently supported by the National Geographic Society (NGS). The goal is to create a single, powerful infrastructure for Public Participation in Science Research (PPSR) projects that any organization can use to create their own project and support their own community of participants. FieldScope currently provides various tools and applications for use by its existing user base that includes the GLOBE project and the Chesapeake Bay monitoring system. The application enables users to contribute volunteered geographic data collection efforts and sharing information among both professional and amateur users. The project would develop and test an enhanced version of the existing FieldScope application. The project supports major programming development for a fully-functional web-based application that would significantly enhance the usability of the current application. Along with programming new features and capabilities, the project involves extensive evaluation of the new capabilities and involves three citizen-based organizations as testbeds.
The project will increase the capability of the existing system to handle large numbers of users and user groups and also increase the number and variety of tools available to any user; provide customization through the adaption of common APIs; and provide for expansion of computer space through use of virtual servers in a cloud computing environment thereby limiting the need for installed hardware. This approach would maximize storage and computing power by being able to call on resources when necessary and scaling back when demand decreases. The platform would include advanced visualization capabilities as part of a suite of analytic tools available to the user. Social networking applications would also be incorporated as a way of enabling communication among users of a particular site. The operation of the portal would be supported by the NGS and made available free of charge to any group of users applying for space. Nominal fees will be applied to large organizations requiring large computing space or additional features. User groups can request NGS supply custom features for the cost of development and deployment.
The evaluation of this project is extensive and focused on formative evaluation as a means to identify user preferences, from look and feel of the site to types of tools desired and types of uses expected. The formative evaluation would be conducted ahead of any commitment to programming and formatting of the features of the site. The project responds to a need expressed throughout the citizen science community for web-based applications that enable individuals to engage in a topic of interest, interact in various ways on such a site including the submission of data and information, analyze the information in concert with others and with working scientists in the field, and utilize state-of-the-art tools such as visualization as a way of making sense of the data being collected. There have been numerous proposals to create similar types of sites from various groups, each based on its own perceived needs and grounded in its own particular discipline or topic. This activity could serve this community more broadly and save similar groups the trouble and expense of creating sites from scratch.
Climate Change: NASA’s Eyes on the Arctic is a multi-disciplinary outreach program built around a partnership targeted at k-12 students, teachers and communities. Utilizing the strengths of three main educational outreach institutions in Alaska, the Challenger Learning Center of Alaska partnered with the University of Alaska Museum of the North, the Anchorage Museum and UAF researchers to build a strategic and long lasting partnership between STEM formal and informal education providers to promote STEM literacy and awareness of NASA’s mission. Specific Goals of the project include: 1) Engaging and inspiring the public through presentation of relevant, compelling stories of research and adventure in the Arctic; 2) strengthening the pipeline of k-12 students into STEM careers, particularly those from underserved groups; 3) increasing interest in science among children and their parents; 4) increasing awareness of NASA’s role in climate change research; and 5) strengthening connections between UAF researchers, rural Alaska, and Alaska’s informal science education institutions. Each institution chose communities with whom they had prior relationships and/or made logistical sense. Through discussions analyzing partner strengths, tasks were divided; the Challenger Center taking on the role of k-12 curriculum development, the Museum of the North creating animations with data pulled from UAF research, to be shown on both in-house and traveling spherical display systems and the Anchorage Museum creating table top displays for use in community science nights. Each developed element was used while visiting the identified communities both in the classroom environment and during the community science nights.
This paper advocates for place-based education to guide research and design for mobile computers used in outdoor informal environments (e.g., backyards, nature centers and parks). By bringing together research on place-based education with research on location awareness, we developed three design guidelines to support learners to develop robust science-related understandings within local communities. The three empirically- derived design guidelines are: (1) Facilitate participation in disciplinary conversations and practices within personally-relevant places, (2) Amplifying observations to see
This article presents IMAX films as making science more accessible to the public, but cautions against building spectators rather than participants. It examines a film about Yellowstone while making the case that large-format films serve entertainment rather than scientific purposes.
Research has shown that video games can be good for learning, particularly for STEM topics. However, in order for games to be scalable and sustainable, associated research must move beyond considerations of efficacy towards theories that account for classroom ecologies of students and teachers. This study asks how a digital game called Citizen Science, built using tropes and conventions from modern games, might help learners develop identities as citizen scientists within the domain of lake ecology. We conducted an expert-novice study, revealing that games literacy was a mediating variable for
"Birds in the Hood" or "Aves del Barrio" builds on the Cornell Laboratory of Ornithology's (CLO) successful Project Pigeon Watch, and will result in the creation of a web-based citizen science program for urban residents. The primary target audience is urban youth, with an emphasis on those participating in programs at science centers and educational organizations in Philadelphia, Tampa, Milwaukee, Los Angeles, Chicago and New York. Participants will develop science process skills, improve their understanding of scientific processes and design research projects while collecting, submitting and retrieving data on birds found in urban habitats. The three project options include a.) mapping of pigeon and dove habitats and sightings, b.) identifying and counting gulls and c.) recording habitat and bird count data for birds in the local community. Birds in the Hood will support CLO's Urban Bird Studies initiative by contributing data on population, community and landscape level effects on birds. Support materials are web-based, bilingual and include downloadable instructions, tally sheets, exercises and results. The website will also include a web-based magazine with project results and participant contributions. A training video and full color identification posters will also be produced. The program will be piloted at five sites in year one, and then field-tested at 13 sites in year two. Regional dissemination and training will occur in year three. It is anticipated that 5,000 urban bird study groups will be in place by the end of the funding period, representing nearly 50,000 individuals.
DATE:
-
TEAM MEMBERS:
Rick BonneyJohn FitzpatrickMelinda LaBranche
This article examines the literature on Native science in order to address the presumed binaries between formal and informal science learning and between Western and Native science. We situate this discussion within a larger discussion of culturally responsive schooling for Indigenous youth and the importance of Indigenous epistemologies and contextualized knowledges within Indigenous communities.
DATE:
TEAM MEMBERS:
Bryan Mckinely Jones BrayboyAngelina Castagno
Modern zoological gardens have invested substantial resources in technology to deliver environmental education concepts to visitors. Investment in these media reflects a currently unsubstantiated belief that visitors will both use and learn from these media alongside more traditional and less costly displays. This paper proposes a model that identifies key factors theorized to influence the likelihood of visitors engaging in technology-delivered media. Using data from two case studies of large National Science Foundation-funded projects in zoos, the authors argue key factors in predicting
Funded by NSF, Earth: The Operators’ Manual (ETOM) is a users’ guide to the present and future energy resources of our planet, providing “users” with the information, attitudes and tools to make wiser choices about powering homes, schools, businesses and communities. ETOM uses a hybrid model of science communication including video + in-person presentations + Web 2.0 social networking. Rockman et al evaluated project impact, working from front-end to summative stages to understand the reactions of media, online and on-site audiences using both qualitative and quantitative measures to look at
This report was completed by the Program Evaluation Research Group at Endicott College in October 2013. It describes the outcomes and impacts of a four-year, NSF-funded project called Go Botany: Integrated Tools to Advance Botanical Learning (grant number 0840186). Go Botany focuses on fostering increased interest in and knowledge of botany among youth and adults in New England. This was being done through the creation of an online flora for the region, along with the development of related tools, including PlantShare, and a user-friendly interface for ‘smartphones’. In January 2012, the PI
DATE:
TEAM MEMBERS:
Judah LeblangNew England Wild Flower Society