Skip to main content

Community Repository Search Results

resource project Exhibitions
RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
DATE: -
TEAM MEMBERS:
resource project Public Programs
This project focuses on environmental health literacy and will explore the extent to which diverse rural and urban youth in an out-of-school STEM enrichment program exhibit gains in environmental health literacy while engaged in learning and teaching others about community resilience in the face of changing climates. Science centers and museums provide unique opportunities for youth to learn about resilience, because they bring community members together to examine the ways that current science influences local decisions. In this project, teams of participating youth will progress through four learning modules that explore the impacts of changing climates on local communities, the local vulnerabilities and risks associated with those changes, possible mitigation and adaptation strategies, and building capacities for communities to become climate resilient. After completion of these modules, participating youth will conduct a resilience-focused action project. Participants will be encouraged to engage peers, families, friends, and other community stakeholders in the design and implementation of their projects, and they will gain experience in accessing local climate and weather data, and in sharing their findings through relevant web portals. Participants will also use various sensors and web-based tools to collect their own data.



This study is guided by three research questions: 1) To what extent do youth develop knowledge, skills, and self- efficacy for developing community resilience (taken together, environmental health literacy in the context of resilience) through participation in museum-led, resilience-focused programming? 2) What program features and settings foster these science learning outcomes? And 3) How does environmental health literacy differ among rural and urban youth, and what do any differences imply for project replication? Over a two- year period, the project will proceed in six stages: a) Materials Development during the first year, b) Recruitment and selection of youth participants, c) Summer institute (six days), d) Workshops and field experiences during the school year following the summer institute, e) Locally relevant action projects, and f) End- of-program summit (one day). In pursuing answers to the research questions, a variety of data sources will be used, including transcripts from youth focus groups and educator interviews, brief researcher reflections of each focus group and interview, and a survey of resilience- related knowledge. Quantitative data sources will include a demographic survey and responses to a self-efficacy instrument for adolescents. The project will directly engage 32 youth, together with one parent or guardian per youth. The study will explore the experiences of rural and urban youth of high school age engaged in interactive, parallel programming to enable the project team to compare and contrast changes in environmental health literacy between rural and urban participants. It is anticipated that this research will advance knowledge of how engagement of diverse youth in informal learning environments influences understanding of resilience and development of environmental health literacy, and it will provide insights into the role of partnerships between research universities and informal science centers in focusing on community resilience.
DATE: -
TEAM MEMBERS: Kathleen Gray Dana Haine
resource research Media and Technology
This poster was presented at the 2021 NSF AISL Awardee Meeting. The project's goals are to: Develop systems thinking skills in youth Increase understanding of sustainable agricultural systems Raise awareness of STEM careers related to agricultural systems Leverage scientific research models and data for educational video games Use the Corn-Water-Ethanol-Beef System as a model for interconnected Food, Energy, Water Systems (FEWS)
DATE:
TEAM MEMBERS: Deepak Keshwani
resource project Public Programs
Environmental Protectors is a four-year project based at the University of California at Berkeley’s Lawrence Hall of Science. The project is designed to explore the educational and developmental impact of an informal science education programming model that features Community and Citizen Science (CCS) activities for youth of color residing in urban communities. The project is grounded in hypothesis that CCS-focused experiences result in learning outcomes that better position youth of color to more effectively engage in Science, Technology, Engineering, and Mathematics (STEM) related educational, occupational, and civic activities. Each year, in three economically challenged urban communities located throughout the country, youth of color between the ages of 14 and 18 will participate in month-long summer or semester-long afterschool programs. These programs will feature CCS-related activities that include collection, analysis, interpretation and presentation of data that addresses local, pressing environmental quality concerns, such as soil lead contamination and air particulate matter pollution. The project will use a mix of qualitative and quantitative data collection and analysis to assess the impact of youth engagement in these CCS activities. Overall, through its implementation the project aims to generate information useful in nationwide efforts designed to identify effective strategies and approaches that contribute to increasing STEM understanding and interest among youth of color.

Project research is guided by the following questions: A) What are ways to increase STEM engagement among those who have typically been underrepresented in Community and Citizen Science (CCS) research projects in particular and STEM in general? B) When youth are engaged in CCS, what outcomes are observed related to their science agency and science activism? What other unanticipated outcomes are observed related to benefits of participation and learning? C) How does science activism develop in youth participating in CCS?; and D) How do differences in program implementation impact youth outcomes. In particular, the project explores the manner in which particular CCS activities (e.g., project design, data analysis and interpretation, data presentation) impact youth “Science Agency,” defined as a combination of constructs that include Science Identity (i.e., sense of themselves as science thinkers), Science Value (i.e., awareness of the potential benefits of applying scientific practices to addressing critical community health and environmental issues) and Science Competency Beliefs (i.e., belief of themselves as competent science practitioners) and “Science Activism,” defined as a combination of perceived behavioral control and personal salience. Through its execution the project will refine a theory of learning that makes explicit connections between these constructs. Information derived from the execution of the project will contribute to deeper understanding of the potential for using of CCS projects as a key component of science education environments in urban areas and in general.

This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
DATE: -
TEAM MEMBERS: Kevin Cuff Mac Cannady Sarah Olsen
resource project Public Programs
This innovations in development project will develop and study the Wéetespeme Stewardship Program (Wéetespeme: “I am of this land”). Tribal led, the project supports and studies climate science learning experiences grounded in traditional ecological knowledge, culturally relevant pedagogy, and land education pedagogy. Nez Perce high-school youth and college-age adults will choose specific species and places; work with tribal resource management offices to learn to monitor, assess, and mitigate climate impacts; and receive mentorship from tribal elders, as they co-develop climate-science adaptive management plans for local concerns. Adaptive management plans may include topics such as: drought and extreme weather impacts, shifts in animal populations and migration patterns, cultivating traditional foods, and managing important cultural sites. The Tribal research team will collaborate with curriculum developers and Indigenous graduate student(s) from the University of Idaho and Northwest Youth Corps to explore how a STEM curriculum centered on cultural identity and traditional knowledge can align with Indigenous youths’ identities, resource responsibilities, and understanding and interest in STEM career pathways within the Tribe and in the region. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants. This project’s approach to curriculum development, and youths’ identity and career interest development, will contribute to the informal STEM learning field’s nascent understanding of Tribal-driven education efforts, and approaches to blending or bridging traditional ecological knowledge and Western ways of knowing. With co-funding from the Directorate of Geosciences’ (GEO), this project will further advance efforts related to the application of traditional ecological knowledge to the geosciences, including Indigenous workforce development opportunities and research experiences for Indigenous graduate students.

Over a two-year duration, the study will address two research questions. 1) How and in what ways does a culturally relevant out-of-school curriculum support Indigenous youths’ understanding of their own identity, resource responsibility, and possible career pathways, including those on Tribal land? 2) How and in what ways does a culturally relevant out-of-school curriculum develop Indigenous youths’ ability to monitor and address climate change impacts, to protect, preserve and recover land relationships that are central to their cultural identities and values? Thirty-two college-age young adults and high-school youth (sixteen of each age group) will participate in the Wéetespeme Stewardship Program and research study. Indigenous research methodologies will guide the approach to investigating and sharing Indigenous youths’ understanding of their own identity, resource responsibility, possible career pathways, and learning experiences within the Wéetespeme Stewardship Program activities. Two Indigenous graduate students will play a central role in conducting the research, supporting systemic impacts within, and beyond, the Tribe. Methods will be embedded in learners’ experiences and will include field journals, adaptive management plans, story maps, and talk circles. Youth will also participate as research partners: understanding the research questions, assisting with the analysis, contributing to interpretation of the findings, and co-authoring manuscripts that share their stories and this work. The informal STEM curriculum will be shared regionally, allowing for Tribes in the plateau region to benefit from culturally relevant approaches youth engagement to support climate resilience. The results of the research will also be shared more broadly, contributing to the emerging knowledge-base about the ways that cultural practices and values, guided by land education pedagogy and the mentorship of traditional ecological knowledge keepers, and embedded in informal STEM learning experiences, can contribute to Indigenous youths’ identities and understanding of, and investment in, local and meaningful environmental resources and STEM career pathways.
DATE: -
TEAM MEMBERS: Nakia Williamson Karla Bradley Eitel Jeff Parker Josiah Pinkham
resource project Public Programs
Urban environments are remarkable natural laboratories to study ecology and speciation. These learning ecosystems are ecologically diverse and potentially more accessible for urban youth and their families. Unfortunately, disparities in STEM access continue to persist. Transportation, social and financial barriers, and a lack of awareness of STEM opportunities are a few of the inequities that significantly limit participation in STEM programs among urban youth, especially from underrepresented groups. Perceptions of who can meaningfully engage in scientific research remain demographically skewed to affluent, aged, and non-minoritized individuals. In an effort to address these challenges, this pilot study will investigate the feasibility of using remote cameras to survey local, urban wildlife to promote inclusive practices and youth engagement in STEM. A co-created curriculum will be employed, bringing urban ecologists and Detroit youth (6th-8th grade) together to participate in wildlife field experiences to garner and analyze data collected from cameras deployed through the city. It is the unique coupling of the camera surveys with authentic place-based, culturally relevant ecological research that will facilitate the innovative, experiential learning experiences. This pilot study will advance the understanding of the extent to which various facilitation methods and participation in out-of-school time programs like the Wildlife Neighbors program impact youth. From a broader impacts perspective, this work may yield positive environmental literacy outcomes and prove applicable for other urban youth in the country. The research findings would lay the foundation for future research and add novel approaches to the NSF portfolio on urban, out-of-school time environmental education programs for middle school youth using camera surveys to promote inclusivity, engagement in scientific field research, and increase youths' interest in STEM.

Through a strategic partnership between the Applied Wildlife Ecology Lab at the University of Michigan and the Detroit Zoological Society, this pilot will examine the effects of experiential learning through wildlife monitoring in twenty-four Detroit parks on strengthening four aspects of youth's environmental literacy: knowledge of ecology, competencies as researchers, empathy for wildlife, and sense of place. Youth will self-select into one of four facilitation models, each varying in intensity (summer experience, afterschool club) and mode (in-person, remote). Using camera surveys deployed in Detroit parks, youth will be immersed in ecological research, engaging them in the entire scientific process: observation, inquiry, data collection, fieldwork, data analysis and storytelling. Youth pre- and post-surveys, daily reflections on program activities, and parent/guardian questionnaires will assess impacts and experiences of the Wildlife Neighbors facilitation models and program more broadly. The research questions will explore the extent to which participation in Wildlife Neighbors: (a) differs across facilitation intensity and mode, and (b) strengthens environmental literacy among middle school urban youth when engaged in a co-created out-of-school time experiential program using remote cameras to survey local wildlife. Over the two-year pilot duration, approximately 100 youth and their families will participate in the program.

This pilot study is funded by the NSF Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.

This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Nyeema Harris Stephen Vrla
resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase student motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by designing, implementing, and testing an afterschool internship program that will engage older youth in work-based learning experiences in in STEM fields. The new model program will link the resources and learning approaches of the Global Learning and Observations to Benefit the Environment (GLOBE) program to career academies where youth from populations underrepresented in STEM fields will gain direct experiences in data collection and analysis through student-led investigations in the geosciences and environmental studies. Two key outcomes of this project will be: (a) Development of a replicable model of an afterschool STEM internship program for informal STEM learning environments and schools across the nation, and (b) Development of a set of measurement tools and approaches that can assess and promote understanding regarding how youth think and feel about science and their possible future roles in science careers. Participating youth will master scientific practices and become immersed in science culture through opportunities to develop research projects, interact with scientists, and collaborate with fellow student-researchers. In the process, they will develop collaboration and communication skills, and gain an increased sense of identity and agency in science fields. They will also learn new strategies to attain their career goals.

In developing and testing the new model of an afterschool program focusing on STEM careers, the project will draw on both existing and emerging knowledge from three areas of inquiry: informal STEM learning, youth development, and work-based learning. The project will bring together theory related to work-based learning and apprenticeship to knowledge about informal STEM learning and youth development, addressing the needs of older youth as they transition to adulthood. The program will also explore the use of measurement tools that address workforce-related student learning goals in addition to social-emotional learning and STEM learning goals, adapting existing tools and developing new tools as needed. The result will be a replicable model for an afterschool, career-focused internship that facilitates STEM learning and identity, employing youth development principles, such as experiential learning, peer collaboration, adult mentoring, and meaningful contributions to the world beyond school. The project will use a mixed-methods approach to investigate four research questions: (1) What aspects of the program are most important for promoting the development of scientific practices, socio-emotional learning, and career skills? (2) How can afterschool informal science learning be designed to address the perceptions and needs of diverse groups, especially those from populations underrepresented in STEM? (3) How do youth make gains in developing facility with STEM practices, key social-emotional outcomes needed in work and civic life, and career development knowledge? And (4) How do we accurately measure development of scientific practices, socio-emotional learning and career skills? The project will develop pretest and posttest self-report measures to gauge program influence on social-emotional outcomes and career-related outcomes, and performance-based assessments and rubrics will be used to assess culminating science projects. Other factors contributing to the success of the new model will be examined through analysis of coach instructional logs, surveys, and questions, as well as participant observations, interviews, and focus groups. Project participants will be youth of ages 14-18 recruited from ten inner-city schools having large populations of students from groups underrepresented in STEM fields. Participants will meet in teams of approximately 14 interns for a total of 2.5 hours per week for 32 weeks. Each team will also meet an additional 4-6 times for weekend or overnight outings associated with their study sites.
DATE: -
TEAM MEMBERS: Manuel Alonso Cathy Ringstaff Svetlana Darche
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones