KCTS Television is producing 20 new programs for the third season of "Bill Nye the Science Guy." The series, which has received an enthusiastic public response, will continue to be on PBS stations during the week and syndicated to commercial stations on weekends. The twenty topics for Season range from earth science, to physical science, to life science, to technology and include programs on such diverse subjects as spiders, time, life cycles, inventions, flowers, architecture, computers, probability, invertebrates, and forensics. Outreach activities for the third season are designed an emphasis on reaching out to new audiences, especially girls and children of color. The Season III outreach components consist of: o "The Big News of Science" - a newsletter distributed through youth serving organizations as well as being mailed directly to viewers at home o An at-home science kit - an easy to use kit that enables children and their families to perform science experiments together at home. Two-thirds of the kits to be distributed directly to youth and one-third will be distributed to children participating in afterschool and community programs. o Teacher's Kit - to be distributed to fourth grade teachers nationwide. o Special appearances - As Bill Nye's schedule permits, he will present a live, traveling science demonstration show in selected urban communities. The programs will be based at science museums, community centers, or similar venues and will include an explanation about the science content of the series, and demonstrations of science experiments where children are invited to participate. o A PBS station outreach kit - This material will provide PBS outreach and education staff with programs, tips for developing local science outreach projects, and a list of informal science resources. The staffing for Season III will remain basically the same as it has been for Seasons I and II. Bill Nye will remain as Chief Writer and Host, Elizabeth Brock will continue as Executive Producer, and James McKenna and Erren Gottlieb will remain the series producers.
DATE:
-
TEAM MEMBERS:
Elizabeth BrockJames McKennaErren GottliebWilliam Nye
The Museum of Science and Industry in Chicago is producing a large format film that examines the sun and the relationship between the earth, its inhabitants, and our mother star. SOLARMAX will present some of the newest discoveries about the sun and will place special emphasis on the defining impact of the sun on human life and culture. The influence of solar cycles on global warming will be explored and new, unprecedented high-definition images of the sun will be included for the first time in a large format film. The film will examine how multiple scientific disciplines interact to build a complete picture of the universe by delving into the history and philosophy of science, astronomy, astrophysics, solar physics, helioseismology, meteorology, spectrography, mathematics, and biology. The Museum of Science and Industry, Chicago, will serve as Executive Producer and distributor of SOLARMAX. The film will be produced by Robert Eather, an expert in magnetospheric physics and a science filmmaker. The Co-Producer, Writer, and Director will be John Weiley who previously served in these roles for the large format film, Antarctica. Advisors in the fields of space weather, solar physics, and archaeoastronomy include Louis Lanzerotte, Paul Dusenbery, Gaerhardt Haerendell, George Siscoe, and Edwin Krupp.
DATE:
-
TEAM MEMBERS:
Robert EatherJohn WeileyJohn WickstromMuseum of Science and Industry
The Exploratorium requests $1,389,665 to develop "Live @ the Exploratorium: Origins." The Exploratorium will conduct a three-year pilot project to develop an experimental series of Webcasts, related Web-based resources, and museum activities . The project will use new communications technologies to create an ongoing link between Internet and museum audiences and current scientific research efforts at observatories around the world where scientists are investigating the origins of matter, the universe, the Earth, and life itself. The Exploratorium will establish a remote connection to six science research locations investigating particle physics, cosmology, polar research, earthquake research, astrobiology and genetics. During each live Webcast museum visitors and Internet visitors will be able to interact with scientists at the remote observatories.
This planning grant is designed to engage urban and rural families in science learning while piloting curriculum development and implementation that incorporates both Native and Western epistemologies. Physical, earth, and space science content is juxtaposed with indigenous culture, stories, language and epistemology in after-school programs and teacher training. Project partners include the Dakota Science Center, Fort Berthold Community College, and Sitting Bull College. The Native American tribes represented in this initiative involve partnerships between the Dakota, Lakota, Nakota, Hidatsa, Mandan, and Arikara. The primary project deliverables include a culturally responsive Beyond Earth Moon Module, teacher training workshops, and a project website. The curriculum module introduces students to the moon's appearance, phases, and positions in the sky using the Night Sky Planetarium Experience Station during programs at the Boys and Girls Club (Ft. Berthold Community College), Night Lights Afterschool program (Sitting Bull Community College), and Valley Middle School (UND and Dakota Science Center). Students also explore core concepts underlying the moon's phases and eclipses using the interactive Nature Experience Station before engaging in the culminating Mission Challenge activity in which they apply their knowledge to problem solving situations and projects. Fifteen pre-service and in-service teachers participate in professional development workshops, while approximately 300 urban and rural Native youth and family members participate in community programs. A mixed-methods evaluation examines the impact of Western and Native science on the learning of youth and families and their understanding of core concepts of science in a culturally responsive environment. The formative evaluation addresses collaboration, development, and implementation of the project using surveys and interviews to document participant progress and obtain input. The summative evaluation examines learning outcomes and partnerships through interviews and observations. Presentations at national conferences, journal publications, and outreach to teachers in the North Dakota Public School System are elements of the project's comprehensive dissemination plan. The project findings may reveal impacts on participants' interest and understanding of connections between Native and Western science, while also assessing the potential for model replication in similar locales around the country.
The Science Museum of Minnesota (SMM) in collaboration with the Illinois State Museum (ISM), the St. Louis Science Center (SLSC), and the National Center for Supercomputing Applications(NCSA) at the University of Illinois in Champaign, Illinois, will form a museum consortium to develop two virtual reality interactive displays (River Pilot Simulator and Digital River Basin) and other web-based activities that focus on the Mississippi River. This group will be known as the Mississippi River Web Museum Consortium. Each museum will end up with both software modules that will lead visitors to the story of the River. The river's local presence will serve as an entry point for the visitors at each museum. The NCSA will contribute their access to and knowledge of powerful computer simulation, scientific visualization, and collaborations technologies that are usually restricted to research settings and rarely available to a museum audience or the general public. The Consortium will also develop a shared site on the WWW that will invite users to engage in guided inquiry that will deepen their understanding of the large, complex, and integrated river system. The science content underlying the project will include river hydrology and geomorphology, life sciences, environmental studies employing geographic information systems, and the physics of motion. The activities will address a number of the National Science Education Standards. Complementary programming linking these activities with formal education include a RiverWeb(tm) Posting Board and a RiverWeb(tm) Classroom Resource Guide.
The Science Museum of Minnesota (SMM) in collaboration with the Illinois State Museum (ISM), the St. Louis Science Center (SLSC), and the National Center for Supercomputing Applications(NCSA) at the University of Illinois in Champaign, Illinois, will form a museum consortium to develop two virtual reality interactive displays (River Pilot Simulator and Digital River Basin) and other web-based activities that focus on the Mississippi River. This group will be known as the Mississippi River Web Museum Consortium. Each museum will end up with both software modules that will lead visitors to the story of the River. The river's local presence will serve as an entry point for the visitors at each museum. The NCSA will contribute their access to and knowledge of powerful computer simulation, scientific visualization, and collaborations technologies that are usually restricted to research settings and rarely available to a museum audience or the general public. The Consortium will also develop a shared site on the WWW that will invite users to engage in guided inquiry that will deepen their understanding of the large, complex, and integrated river system. The science content underlying the project will include river hydrology and geomorphology, life sciences, environmental studies employing geographic information systems, and the physics of motion. The activities will address a number of the National Science Education Standards. Complementary programming linking these activities with formal education include a RiverWeb(tm) Posting Board and a RiverWeb(tm) Classroom Resource Guide.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This education project is a time sensitive opportunity related to the March 9, 2016 Total Solar Eclipse occurring in a remote part of the world located in Waleia in the Federated States of Micronesia, a U.S. affiliated Pacific Island nation. The path of totality is only 100 miles wide and passes through only a few Pacific Island nations ending in Hawaii. This project uses this unique phenomenon to educate a large US and international audience about solar science using multi-platforms with integrated video, social media, and public programs. Project deliverables include the production of a broadcast of the eclipse live from Waleia in the Federated States of Micronesia on March 9, 2016 making it accessible to hundreds of countries and millions of people around the world via satellite and live streaming on the Internet. Additional deliverables include on-site educational programs at science centers and planetariums as well as media resources for long-term use. These resources will enhance the interest and preparedness for additional public engagement when the 2017 eclipse occurs in the U.S. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in solar physics research by funding the construction of the world's largest solar telescope, the Daniel K. Inouye Solar Telescope which is slated to begin operations in late 2019 and operated by the National Solar Observatory. This new facility will revolutionize researchers' capability to study the Sun and its magnetic fields. This education project leverages that investment with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and worldwide through the Internet.
DATE:
-
TEAM MEMBERS:
ExploratoriumRobert SemperNicole MinorRobyn Higdon
The Next Generation Science Standards (NGSS) identify an ambitious progression for learning energy, beginning in elementary school. To help the nation's teachers address this challenge, this project will develop and investigate the opportunities and limitations of Focus on Energy, a professional development (PD) system for elementary teachers (grades 3-5). The PD will contain: resources that will help teachers to interpret, evaluate and cultivate students' ideas about energy; classroom activities to help them to identify, track and represent energy forms and flows; and supports to help them in engaging students in these activities. Teachers will receive the science and pedagogical content knowledge they need to teach about energy in a crosscutting way across all their science curricula; students will be intellectually engaged in the practice of developing, testing, and revising a model of energy they can use to describe phenomena both in school and in their everyday lives; and formative assessment will guide the moment-by-moment advancement of students' ideas about energy. This project will develop and test a scalable model of PD that will enhance the ability of in-service early elementary teachers to help students learn energy concepts by coordinating formative assessment, face-to-face and web-based PD activities. Researchers will develop and iteratively refine tools to assess both teacher and student energy reasoning strategies. The goals of the project include (1) teachers' increased facility with, and disciplined application of, representations and energy reasoning to make sense of everyday phenomena in terms of energy; (2) teachers' increased ability to interpret student representations and ideas about energy to make instructional decisions; and (3) students' improved use of representations and energy reasoning to develop and refine models that describe energy forms and flows associated with everyday phenomena. The web-based product will contain: a set of formative assessments to help teachers to interpret student ideas about energy based on the Facets model; a series of classroom tested activities to introduce the Energy Tracking Lens (method to explore energy concept using multiple representations); and videos of classroom exemplars as well as scientists thinking out loud while using the Energy Tracking Lens. The project will refine the existing PD and build a system that supports online implementation by constructing a facilitator's guide so that the online community can run with one facilitator.
DATE:
-
TEAM MEMBERS:
Sara LacyRoger TobinNathaniel BrownStamatis VokosRachel ScherrKara GrayLane SeeleyAmy Robertson
A team of researchers and practitioners developed a museum program to coach families in the skills of scientific inquiry at interactive exhibits. The program was inspired by the increasing focus on scientific inquiry in schools and the growing number of open-ended exhibit designs in science museums. The development process involved major decisions in two arenas: which inquiry skills to teach, and what pedagogical strategies to use to teach them. After many rounds of refinement based on evaluation with families, the final program, called Inquiry Games, improved visitors' inquiry behavior in
This Stocklmayer, Rennie, and Gilbert article outlines current challenges in preparing youth to go into science careers and to be scientifically literate citizens. The authors suggest creating partnerships between informal and formal education to address these challenges in school.
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
This report summarizes evaluative findings from a project titled “What Curiosity Sounds Like: Discovering, Challenging, and Sharing Scientific Ideas” (a.k.a.: “Discovery Dialogues”). The project, a Full-Scale development project funded by the National Science Foundation as part of its Advancing Informal Science Learning (AISL) program, explored new ways to actively engage both lay and professional audiences, and foster meaningful communication between scientists and the general public. Appendix includes survey and interview questions.