This article describes the Quest Atlantis (QA) project, a learning and teaching project that employs a multiuser, virtual environment to immerse children, ages 9–12, in educational tasks. QA combines strategies used in commercial gaming environments with lessons from educational research on learning and motivation. It allows users at participating elementary schools and after-school centers to travel through virtual spaces to perform educational activities, talk with other users and mentors, and build virtual personae. Our work has involved an agenda and process that may be called socially
DATE:
TEAM MEMBERS:
Sasha BarabMichael ThomasTyler DodgeRobert CarteauxHakan Tuzun
Design-based research is a collection of innovative methodological approaches that involve the building of theoretically-inspired designs to systematically generate and test theory in naturalistic settings. Design-based research is especially powerful with respect to supporting and systematically examining innovation. In part, this is due to the fact that conducting design-based research involves more than examining what is. It also involves designing possibilities and then evolving theories within real-world contexts. In this article we share the historical development of three outcomes of
The Situating Hybrid Assemblies in Public Environments (SHAPE) project within the European Disappearing Computer initiative has explored how emerging ubiquitous technologies can support museum visiting experiences. SHAPE has designed hybrid artifacts that support visitors manipulating phisical and digital material in a visible and interesting manner.
DATE:
TEAM MEMBERS:
Liam BannonSteve BenfordJohn BowersChristian Heath
An important challenge in urban science education is finding ways to engage all students in the learning of science. However, research in this area has consistently shown that around middle school student engagement in science wanes. Using critical ethnographic methods this study reveals how students cultivate a sense of ownership in an informal science video project. Student ownership of what they they learn plays an important role in how they engage in the learning environment. In this study ownership is characterized by five themes, and the notion of student ownership science is challenged
The article presents information on International Technology Education Association's document "Standards for Technological Literacy" (STL). This document is generally thought of as a tool for K-12 schooling that identifies what students should know and be able to do in order to achieve technological literacy. However, the standards in STL are moving into another, broader venue, one that will potentially reach youth and adults of all ages. This article describes how the Boston Museum of Science has assumed the leadership in informal education's museum arena to implement STL and advance the
DATE:
TEAM MEMBERS:
Jill Russell
resourceprojectProfessional Development, Conferences, and Networks
The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
In October 2005, the National Science Foundation brought members of its nanoscale science and engineering education (NSEE) projects to Arlington, VA for a 2-day workshop to explore the status of on-going efforts and to forge collaborations at the national level that would facilitate future efforts. NSF currently funds NSEE projects through the Division of Elementary, Secondary, and Informal Education (ESIE), the Directorate for Engineering as part of the Nanoscale Science and Engineering Centers (NSEC), National Nanotechnology Infrastructure Network (NNIN), the Network for Computational
This monograph, the final report of the 21st Century Literacy Summit held in April 2005, presents an action plan for this emerging field applicable to higher education, K-12 education, policy makers, media & the arts, and research, and details the strategic priorities and specific recommendations for these sectors that were the summit's major outcomes.
This research study reports on the evaluation of the outcome and impact of learning as a result of the implementation of Education Programme Delivery Plans in 69 museums in the nine regional museum hubs in England during September, October and November 2005. This is the second study of the impact of learning achieved through museum school services which have been funded through the Renaissance in the Regions programme, which provides central government funding to museums in the English regions. The first study 'What did you learn at the museum today?' was carried out in 2003. The findings of
DATE:
TEAM MEMBERS:
Eilean Hooper-GreenhillJocelyn DoddLisanne GibsonMartin PhillipsCeri JonesEmma Sullivan
This paper describes an approach to familiarizing individuals with modern scientific processes through the facilitation of informal learning experiences in and around the museum. Several methods for development of such exhibits and exhibit content are presented. These experiences are discussed and later implemented in the context of the Adler Planetarium and Astronomy Museum in Chicago, IL. The exploration functions as an educational guideline by which museum exhibits may be developed in order to familiarize a more general audience with processes behind scientific research and to make science
The goal of this article is to provide an integrative review of research that has been conducted on the development of children's scientific reasoning. Scientific reasoning (SR), broadly defined, includes the thinking skills involved in inquiry, experimentation, evidence evaluation, inference and argumentation that are done in the service of conceptual change or scientific understanding. Therefore, the focus is on the thinking and reasoning skills that support the formation and modification of concepts and theories about the natural and social world. Major empirical findings are discussed
The purpose of this paper is to review what is known about informal science learning and to recommend areas for further research. The review is intended to support an examination of how children's science learning experiences in designed informal environments like science museums and zoos relate to science learning activities in K-8 schools.