To effectively address problems in education, research must be shaped around a problem of practice. Reorienting research and development in this way must overcome three obstacles. First, the incentive system for university researchers must be changed to reward research on problems of practice. Second, the contexts must be created that will allow the complexity of problems of practice to be understood and addressed by interdisciplinary teams of researchers, practitioners, and education designers. And third, meaningful experimentation must become acceptable in school systems in order to develop
The digital revolution has transformed how young people discover and pursue their interests; how they communicate with and learn from other people; and how they encounter and learn about the world around them. How can we identify best practices for incorporating new media technologies into learning environments in a way that resonates with youth, including their interests, goals, and the ways they use technology in their everyday lives? How do we resolve the need to document and recognize informal STEM learning and connect it to formal education contexts? What strategies can be developed for inspiring and tracking student progress towards the learning goals outlined in the Next Generation Science Standards (NGSS)? These questions are the underlying motivation for this CAREER program of research. Digital badges represent a specific kind of networked technology and have been touted as an alternative credentialing system for recognizing and rewarding learning across domains, both inside and outside of formal education contexts. While there is considerable enthusiasm and speculation around the use of digital badges, the extent to which they succeed at empowering learners and connecting their learning across contexts remains largely untested. This project seeks to fill this gap in knowledge. The approach taken for this program of study is a three phased design-based research effort that will be focused on four objectives: (1) identifying design principles and support structures needed to develop and implement a digital badge system that recognizes informal STEM learning; (2) documenting the opportunities and challenges associated with building a digital badge ecosystem that connects informal learning contexts to formal education and employment opportunities; (3) determining whether and how digital badges support learners' STEM identities; and (4) determining whether and how digital badges help learners to connect their informal STEM learning to formal education and employment opportunities. In Phase 1, an existing prototype created in prior work at Seattle's Pacific Science Center will be developed into a fully functional digital badge system. In Phase 2, the PI will also work collaboratively with higher education stakeholders to establish formal mechanisms for recognizing Pacific Science Center badges in higher education contexts. In Phase 3, the badge ecosystem will be expanded and students' use of and engagement with badges will be tracked as they apply to and enter college. The project involves high school students participating in the Discovery Corps program at the Pacific Science Center, undergraduate and graduate students at the University of Washington, and stakeholders in the K-12 and higher education community in Seattle. Educational activities integrated with this program of research will support: (1) mentoring University of Washington students throughout the project to develop their skills as practice-oriented researchers; (2) incorporating the research processes and findings from the project into university courses aimed at developing students' understanding of the opportunities and challenges associated with using new media technologies to support learning; and (3) using the research findings to develop educational outreach initiatives to support other informal STEM learning institutions in their use of digital badges.
Florida State University and partner University of Alabama will collect and analyze data on how STEM teachers can most effectively collaborate with librarians. The data will be collected at focus groups held at four national conferences: the American Association of School Librarians, the Public Library Association, the National Science Teachers Association, and the National Council of Teachers of Mathematics. This variety of participants at these conferences will allow for diverse opinions, thoughts, and ideas to be compiled, supporting the analysis of how the collaboration between STEM teacher and librarian is working today and providing recommendations on how it could be improved. The overall goal of this planning grant is to assess what is happening in the field so the information can then be shared with the educational and library communities for greater impact.
Tornado Alley is a giant screen adventure that follows renegade filmmaker Sean Casey and the scientists of VORTEX2, the largest tornado research project ever assembled, on their epic missions to encounter one of Earth’s most awe-inspiring events: the birth of a tornado. Program components included the giant screen film; a Web site; educators’ guides and resources for classroom and informal learning; and professional development sessions utilizing cyberinfrastructure to facilitate remote interactions between educators and researchers performing actual data manipulations. In addition, an
The UMN MRSEC conducts an ambitious and multi-faceted education and outreach program to extend the impact of the Center beyond the university, providing undergraduates, college faculty, high school teachers, and K-12 students with opportunities that augment their traditional curriculum and increase their appreciation of materials science and engineering (MS&E). Our summer research program provides high-quality research and educational experiences in MS&E to students and faculty, drawn primarily from undergraduate institutions with limited research opportunities, while placing a strong emphasis on inclusion of women and members of underrepresented groups.
The Education and Outreach (EO) program is an essential part of the CRISP MRSEC located at Yale and SCSU. CRISP offers activities that promote the interdisciplinary and innovative aspects of materials science to a diverse group of participants. The objective of the program is to enhance the education of future scientists, science teachers, K-12 students, parents, and the general public. CRISP’s primary informal science activities include public lectures, family science nights, New Haven Science Fair and museum partnerships.
If we truly wish to promote science or STEM education, then it would seem that the joining of resources and expertise from the communities of formal schooling and informal science education institutions or ISEIs (museums, aquariums, and the like) would be an important early step. Yet creating such connections between teacher and museum remain a challenge for both teachers and informal educators. This study employs a communities of practice lens (Wenger, 1998) to provide a deeper explanation for the challenges inherent in those programs and experiences (field trips, outreach programs, teacher
This paper explores how participating in a program spanning an informal science institution and multiple school sites engaged youth with science in a different way. In particular, teens in the program selected and researched science topics of personal interest, and then authored, revised, and published science news stories about those topics in an authentic publication venue with an outside editor. Through five case studies analyzed according to a sociocultural framework for engagement understood as involving actions, interests and identifications, the authors describe how the news story
In this paper, we explore the details of one youth's science-related learning in- and out-of-school at the time of her participation in an ethnography of youth science and technology learning across contexts and over time. We use the Cultural Learning Pathways Framework to analyze the youth's interests, and the related sociocultural, historical, material, and affect-laden practices in which she and her family participated. The following question guided our analysis: How do everyday moments—experienced across settings, pursuits, social groups, and time—result in scientific learning, expertise
The University of Arkansas Center for Math and Science Education (CMASE), one of eleven mathematics and science centers on university and college campuses around the state, provides quality resources and materials to the home, private and public education community. The Arkansas NASA Educator Resource Center, located within CMASE, is the state's dissemination point for education materials provided by NASA. Resources and school/classroom presentations are free of charge. The main objectives of both centers are to provide: (1) K-16 education outreach to the home, private and public Northwest Arkansas education community; (2) quality professional development for pre-service and in-service teachers at local, regional, state and national levels; (3) access points for dissemination of educational materials, resources and information; and (4) links to common education allies throughout the state and nation.
The National Science Foundation and other funding agencies are increasingly requiring broader impacts in grant applications to encourage US scientists to contribute to science education and society. Concurrently, national science education standards are using more inquiry-based learning (IBL) to increase students’ capacity for abstract, conceptual thinking applicable to real-world problems. Scientists are particularly well suited to engage in broader impacts via science inquiry outreach, because scientific research is inherently an inquiry-based process. We provide a practical guide to help
DATE:
TEAM MEMBERS:
Lisa KomoroskeSarah HameedAmber SzoboszlaiAmanda NewsomSusan Williams
Educational policy increasingly emphasizes knowledge and skills for the preprofessional “science pipeline” rather than helping students use science in daily life. We synthesize research on public engagement with science to develop a research-based plan for cultivating competent outsiders: nonscientists who can access and make sense of science relevant to their lives. Schools should help students access and interpret the science they need in response to specific practical problems, judge the credibility of scientific claims based on both evidence and institutional cues, and cultivate deep
DATE:
TEAM MEMBERS:
Noah FeinsteinSue AllenEdgar Jenkins