The NASA Science Research Mentoring Program (NASA SRMP) is an established mentoring program that presents the wonders of space exploration and planetary sciences to underserved high school students from New York City through cutting-edge, research-based courses and authentic research opportunities, using the rich resources of the American Museum of Natural History. NASA SRMP consists of a year of Earth and Planetary Science (EPS) and Astrophysics electives offered through the Museum’s After School Program, year-long mentorship placements with Museum research scientists, and summer programming through our education partners at City College of New York and the NASA Goddard Institute for Space Studies. The primary goals of the project are: 1) to motivate and prepare high school students, especially those underrepresented in science, technology, engineering and math (STEM) fields, to pursue STEM careers related to EPS and astrophysics; 2) to develop a model and strategies that can enrich the informal education field; and 3) to engage research scientists in education and outreach programs. The program features five in-depth elective courses, offered twice per year (for a total of 250 student slots per year). Students pursue these preparatory courses during the 10th or 11th grade, and a select number of those who successfully complete three of the courses are chosen the next year to conduct research with a Museum scientist. In addition to providing courses and mentoring placements, the program has produced curricula for the elective courses, an interactive student and instructor website for each course, and teacher and mentor training outlines.
Journey into Space (JIS) is designed to improve student, educator, and general public understanding of earth/space science and its relationship to NASA goals and objectives through the use of a traveling GeoDome (inflatable planetarium) and engaging supporting programming at The Journey Museum. The Museum collaborates with area colleges, school districts, K-12 educators, youth serving organizations, astronomical affiliations, and others. The overall goal of JIS is to improve student, educator, and general public understanding of STEM and its relationship to NASA goals and objectives. JIS objectives are: 1) To increase student and public interest and awareness in STEM areas; 2) To increase student interest in pursuing STEM careers; 3) To improve teacher knowledge of NASA related science; 4) To increase teacher comfort level and confidence in teaching NASA related science in their classrooms; 5) To increase collaboration between informal and formal science educators; 6) To increase student and public understanding of Plains Indians ethno astronomy; and 7) To increase museum visitors’ interest and understanding of NASA related science. The Museum produced 2 films (“Cradle of Life”, “Looney Moons”) that are offered daily, 4 recurring monthly programs (Final Frontier Friday, Amazing Science, SciGirls that became Science Explorer’s Club, and Black Hills Astronomical Society meetings), summer robotics classes and teachers’ workshops, annual Earth Science Day, in addition to the GeoDome programming that has toured the region including presentations in the three poorest counties in the United States. The ethno-astronomy is underway in partnership with Oglala Lakota College and South Dakota Space Grant Consortium.
Informal Education at NASA Centers: Extending the Reach is a highly leveraged, modular, project-based approach to improving education opportunities for students, formal and informal educators, and life-long learners in NASA Ames Research Center’s local community and beyond. In partnership with the Aerospace Education, Research and Operations (AERO) Institute, NASA Ames has been developing two projects: Exploration Center Field Trips and Field Trip in a Box. California Teaching Fellows Foundation, as a sub awardee, has been expanding their After School University (ASU) program. The division has the goal of supporting NASA’s Education Outcome 2 with improved educational opportunities for all in the NASA Ames Visitor Center and opportunities to bring NASA content into the classroom to improve students understanding of STEM as well as improve teachers understanding and ability to teach NASA-related STEM topics. The division also has the goal of supporting NASA’s Education Outcome 3 by expanding ASU to include NASA-based STEM learning opportunities to 360 additional students in six rural schools as well as train 12 additional Teaching Fellows (Fresno State University future teachers). Through these objectives, NASA Ames has produced 10 Field Trip in a Box kits as well as new and expanded learning opportunities for all, especially 3rd – 8th grade classes, in the NASA Ames Visitor Center. ASU has reached 500 students in 10 schools and hosted 12-14 year old learners in a five-week computer-based flight simulation class, called Flying for Future Pilots.
Millions of children visit virtual worlds every day. In such virtual play spaces as Habbo Hotel, Toontown, and Whyville, kids chat with friends from school, meet new people, construct avatars, and earn and spend virtual currency. In Connected Play, Yasmin Kafai and Deborah Fields investigate what happens when kids play in virtual worlds, how this matters for their offline lives, and what this means for the design of educational opportunities in digital worlds. Play is fundamentally important for kids’ development, but, Kafai and Fields argue, to understand play in virtual worlds, we need to
Increasing evidence suggests that individuals develop their understanding of science concepts in and out of school, using varied community resources and networks. Thus in contrast to historic research approaches that focus exclusively on single organizations and/or educational events, the current paper presents exploratory research in which we utilized specific community ecology analytical tools and approaches to describe and analyze the UK science education community as a whole. Data suggest that overall the UK science education community is highly interconnected and collaborative within
This planning grant addresses the issue of students losing interest in STEM during the ages of 8-12 years. The PIs propose that STEM content provided through electronic media will be more readily accepted by youth because it is on their "home turf." IMX.org will be a new, highly engaging, online destination for tweens and kids at large. It is designed to leverage the Web 2.0 and tweens' fascination with media and popular culture, and to demonstrate the connections between the real world, everyday life, and STEM. The project will test a preliminary design with a focus group of 8-12 year-olds, convene a panel of experts and Advisory Board, and create a beta Web site to conduct formative research.
This is an interview with paleontologist Stephen Jay Gould exploring his personal background, career accomplishments, research on Darwinism, and views regarding religion.
This project will expand the functions and applications of FieldScope, a web-based science information portal currently supported by the National Geographic Society (NGS). The goal is to create a single, powerful infrastructure for Public Participation in Science Research (PPSR) projects that any organization can use to create their own project and support their own community of participants. FieldScope currently provides various tools and applications for use by its existing user base that includes the GLOBE project and the Chesapeake Bay monitoring system. The application enables users to contribute volunteered geographic data collection efforts and sharing information among both professional and amateur users. The project would develop and test an enhanced version of the existing FieldScope application. The project supports major programming development for a fully-functional web-based application that would significantly enhance the usability of the current application. Along with programming new features and capabilities, the project involves extensive evaluation of the new capabilities and involves three citizen-based organizations as testbeds.
The project will increase the capability of the existing system to handle large numbers of users and user groups and also increase the number and variety of tools available to any user; provide customization through the adaption of common APIs; and provide for expansion of computer space through use of virtual servers in a cloud computing environment thereby limiting the need for installed hardware. This approach would maximize storage and computing power by being able to call on resources when necessary and scaling back when demand decreases. The platform would include advanced visualization capabilities as part of a suite of analytic tools available to the user. Social networking applications would also be incorporated as a way of enabling communication among users of a particular site. The operation of the portal would be supported by the NGS and made available free of charge to any group of users applying for space. Nominal fees will be applied to large organizations requiring large computing space or additional features. User groups can request NGS supply custom features for the cost of development and deployment.
The evaluation of this project is extensive and focused on formative evaluation as a means to identify user preferences, from look and feel of the site to types of tools desired and types of uses expected. The formative evaluation would be conducted ahead of any commitment to programming and formatting of the features of the site. The project responds to a need expressed throughout the citizen science community for web-based applications that enable individuals to engage in a topic of interest, interact in various ways on such a site including the submission of data and information, analyze the information in concert with others and with working scientists in the field, and utilize state-of-the-art tools such as visualization as a way of making sense of the data being collected. There have been numerous proposals to create similar types of sites from various groups, each based on its own perceived needs and grounded in its own particular discipline or topic. This activity could serve this community more broadly and save similar groups the trouble and expense of creating sites from scratch.
One of the most recent additions to the range of Immersive Virtual Environments has been the digital fulldome. However, not much empirical research has been conducted to explore its potential and benefits over other types of presentation formats. In this review we provide a framework within which to examine the properties of fulldome environments and compare them to those of other existing immersive digital environments. We review the state-of-the-art of virtual reality technology, and then survey core areas of psychology relevant to experiences in the fulldome, including visual perception
DATE:
TEAM MEMBERS:
Simone SchnallCraig HedgeRuth Weaver
The National Science Foundation (NSF) has funded a number of informal STEM programs that provide funding for media producers, including public television (TV) stations, to provide children’s STEM programming in out-of-school-time (OST) settings. These projects typically include a children's TV series (animated or not) aired on the Public Broadcasting Service (PBS), plus resources such as hands-on activity guides, educator toolkits, and other materials that can be used to support STEM learning in OST settings. This paper explores the lessons learned from seven such programs and their respective
Interactive technologies are employed in museums to enhance the visitors' experience and help them learn in more authentic ways. Great amounts of time and money and many man-hours of hard work have been spent. But do such systems indeed achieve their goals? Do they contribute to a greater user experience (UX) and learning effectiveness? In this paper we describe the use of the "Walls of Nicosia" a 3D multi-touch table installed at the Leventis Municipal Museum in Nicosia, Cyprus. Two groups of students actively participated in this empirical study (they attended the 5th year class at
DATE:
TEAM MEMBERS:
Panagiotis ZahariasDespina MichaelYiorgos Chrysanthou
The read/write web, or Web 2.0, offers ways for users to personalise their online existence, and to develop their own critical identities though their control of a range of tools. Exerting control enables those users to forge new contexts, profiles and content through which to represent themselves, based upon the user-centred, participative, social networking affordances of specific technologies. In turn these technologies enable learners to integrate their own contexts, profiles and content, in order to develop informal associations or communities of inquiry. Within educational contexts these