WNET, working with Education Development Center, will lead a small scale Innovations in Development effort to develop, research, and evaluate a new model to engage underserved families in STEM learning. The new endeavor, Cyberchase: Mobile Adventures in STEM, will build on the proven impact of the public media mathematics series Cyberchase and the growing potential of mobile technology and texting to reach underserved parents. WNET will produce two new Cyberchase episodes for 6-9 year olds, focused on using math to learn about the environment. Drawing on these videos and an existing Cyberchase game, the team will produce a bilingual family engagement campaign that will combine an in-person workshop followed by a 6-8 week "text to parent" campaign, in which parents receive weekly text messages suggesting family STEM activities related to the media content. The engagement model will be piloted in three cities with large low-income/Latino populations, along with one texting campaign offered without the workshop. This project will build knowledge about how to deploy well-designed public media assets and text messaging to promote fun, effective STEM learning interactions in low-income families. While past research on educational STEM media has tended to focus on children, especially preschool age, this project will focus primarily on text messaging for parents, and on learners age 6-9, and the wider scope of parent/child STEM interactions possible at that age.
The primary goal of the project will be to develop, test and refine a family engagement model that includes a face-to-face workshop, rich narrative Cyberchase content, and text-message prompts for parents to engage in short, playful STEM activities with children. The project team will explore which features of the mobile text-and-media program have most value for low-income and Latino families and prompt STEM learning interactions, including a comparison of workshop-based and text-only variants. The project will have three phases: needs assessment and preliminary design; an early-stage test in New York and development and testing of media; and three late-stage tests in contrasting locations, two including workshops and one "text-only," and analysis of findings. Ultimately, the project will share knowledge with the field about the opportunities and challenges of using mobile texting and public media to reach underserved families effectively. This knowledge will also inform a future proposal for production and outcomes research, which, based on the study results, may include a scaled-up version in ten locations and a ten-city Randomized Control Test. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
Research tells us that media -- be it on television or film or in the form of radio podcasts -- are the most widely utilized and trusted sources for public science, technology, engineering, and mathematics (STEM) learning. Media narratives can shape opinions and knowledge about STEM as well as either reduce or enhance cultural biases and perceptions of STEM. However, little is known about the process by which STEM media professionals develop and assess mastery of "STEM Media," or to what extent evidence-based communication strategies and data-supported effective practices are considered and used by creators of STEM media. This conference proposal will bring together STEM professionals and media creators to determine how STEM media makers develop and assess expertise in STEM media making and articulate best practices. The goal is to promote cross-industry collaboration between media producers, STEM professionals and communication researchers in crafting evidence-based media for the public. The project will also create a 2-year STEM Media Fellows program as well as expand the Science of Communication Strand at two Jackson Hole Wildlife Film Festivals (JHWFF) and at the Science Media Awards and Summit in the Hub (SMASH) conference in 2018. The work will be led by Jackson Hole WILD, a nonprofit professional organization, in partnership with Colorado Mesa University.
The project will employ three strategies to advance effective STEM media production and product effectiveness. First, an initiative to provide professional development in Communication Science will be part of the 2017 and 2018 Jackson Hole WILD conferences to increase the attending STEM media professionals' understanding of evidence-based practices. The content will be presented through structured sessions at the conferences with recordings of the sessions made available online as well as through partner organizations. Second, the STEM Media Fellows program will recruit emerging STEM professionals who are interested in media making. The goals of the STEM Media Fellows program are to prepare these diverse STEM professionals with knowledge and skills for media development, and form collaborations among the STEM professionals and media creators. Third, in collaboration with Colorado Mesa University, the project will conduct a Delphi study to determine how mastery of STEM media making is acquired and assessed. The Delphi study will involve gathering perceptions and experiences from the world's leading STEM communicators and media makers regarding how they learned to be professionals and how they would determine the level of expertise of other STEM media makers. The results of the Delphi study will synthesize models and identify best practices that could be used to inform the STEM media industry efforts to align media production with evidence-based practices. These results will be disseminated through appropriate peer-reviewed journals, industry associations, and other outlets of research on informal science education. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE:
-
TEAM MEMBERS:
Ru MahoneyLouis NadelsonLisa Samford
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. The project will bring together science museum visitor experience developers, visitor studies staff, indoor location technology developers, cyber-learning researchers, and STEM informal learning specialists for a two day conference, COMPASS (Conference on Mobile Position Awareness Systems and Solutions), to address the achievements and potential of indoor location aware mobile (ILAM) technology in science museums. The pre-conference work, the conference itself, and a subsequent e-publication will provide multiple, informed perspectives and knowledge around ILAM for science museums to develop apps for visitors' own smartphones to enhance and personalize the visitor experience and to experiment with new kinds of inquiry-based learning. The goals of the conference are to form an integrated vision by consolidating expertise from disparate disciplines connected to ILAM tech development, to transform visitor mobile tools to provide more innovative forms of interaction and personalization, and to open new avenues for visitor research with automated data collection and analysis.
The COMPASS conference will bring together 80 participants for two days in September 2018 at the Exploratorium in San Francisco, CA. The first dissemination will take place in a presentation at the ASTC conference the following month in October 2018. A webinar sharing insights from COMPASS and inviting others to engage will be held in March 2019 hosted by ASTC and accessible by ASTC members and non-members alike. A companion COMPASS e-publication will be released for free download, also in March 2019, with summaries of conference proceedings, key issues identified, case histories of ILAM in museums, white papers and other resources. Conference outcomes include establishing a community of practice or special interest group and establishing common goals for future collaborative work. By gathering a diverse range of perspectives and expertise to share research and evidence based findings, COMPASS include collective problem solving and an informed cross disciplinary approach to planning and implementing ILAM technology in the museum environment. The conference will explicitly address the benefits and quality of open source code and protocols and how techniques could be shared among institutions. As professional experience with deploying ILAM apps grows, this tool could be used to increase accessibility for diverse visitor populations, put in use at smaller and medium sized science centers, and applied to a variety of research studies, increasing the impact for funders and benefiting the science center community at large.
In this project, education researchers, environmental scientists, and educators will develop a computer tool to let STEM educators and curriculum developers build local environmental science models. The system will use data about land use to automatically construct map-based simulations of any area in the United States. Users will be able to choose from a range of environmental and economic issues to include in these models. The system will create simulations that ask students to change to patterns of land use -- for example, increasing land zoned for housing, or open land, or industrial development -- to try to meet environmental and social goals. As a result, students will be able to learn about the interaction of environmental and economic issues relevant to their own city, town, neighborhood, or region. These map-based simulations will be incorporated into an existing science, technology, engineering, and mathematics (STEM) education tool, Land Science, in which learners work in a fictional planning office to study how zoning affects economic and environmental issues in a community. Research has shown that Land Science is mode effective when learners are exploring issues in an area near their home, and the current study will investigate how and why local simulations improve environmental science learning. This project is funded by the Advancing Informal STEM Learning (AISL) program which supports work to enhance learning in informal environments by funding innovative research, approaches, and resources for use in a variety of settings.
In this project, the research team will build, test, and deploy a toolkit that will allow informal STEM educators and developers of informal STEM programming to easily adapt an existing environmental science learning environment, which consists of a place-based virtual internship in urban planning and ecology, to their local contexts, learning objectives, and learner populations. Land Science is a virtual internship in which young people explore the environmental and socio-economic impacts of land-use decisions. To do so, they play the role of interns at an urban planning firm developing a new land-use proposal for the city of Lowell, Massachusetts: they read reports, virtually visit sites, determine stakeholder priorities, and use a geographic information system (GIS) model to evaluate the socio-economic and environmental impacts of land-use choices. No one plan can satisfy all stakeholders, so learners must compromise to create an effective plan and justify their decisions. Land Science has been shown to improve civic engagement, interest in eco-social issues, and understanding of scientific models, but it is most effective when the location of the virtual internship is in or near the learners' home town. To improve the accessibility and impact of this effective learning intervention, the interdisciplinary research team, which includes learning scientists, land-use experts, and informal STEM educators, will develop a Local Environmental Modeling toolkit, which will allow educators to change the location of the simulation and the stakeholder groups, zoning codes, and environmental and socio-economic indicators included in the land-use model. The system will ensure that the model produced is functional, realistic, and appropriately complex. The localized versions of Land Science produced by informal STEM educators will be used in a range of contexts and locations, allowing the research team to study the effects of an online, place-based learning intervention on environmental science learning, STEM interest and motivation, and civic engagement.
DATE:
-
TEAM MEMBERS:
David ShafferKristen ScopinichHolly GibbsJeffrey Linderoth
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This project will advance knowledge in the design of interest triggers for science in immersive digital simulation learning games. When learners are interested in a topic, it can have a profound impact on the quality of their learning. Although much is known about how informal learning experiences can promote interest in STEM, much less research has addressed links between technology use and interest development. This Exploratory Pathways project will investigate (1) the impact of entertainment technology use by middle school learners on STEM interest development, (2) the design of interactive educational technologies created specifically to trigger interest in astronomy, and (3) informal learning resources for sustained interaction with STEM content over time. In particular, learners will have the opportunity to interactively explore the scientific consequences of considering alternative versions of Earth via "What if?" questions, such as "What if the earth had no moon?" or "What if the earth were twice its current size?". While using the simulations, learners will be invited to make observations and propose scientific explanations for what they see as different. Given recent discoveries of potentially habitable worlds throughout the Galaxy, such questions have high relevance to public discourse around space exploration, conditions necessary for life, and the long-term future of the human race. Studies will occur across three informal learning settings: museum exhibits, afterschool programs, and summer camps, and are driven by the following research questions: What technology-based triggers of interest have the strongest influence on interest? Which contextual factors are most important for supporting long-term interest development? And, what kinds of technology-based triggers are most effective for learners from audiences who are underrepresented in STEM? This research will result in an empirically tested approach for cultivating interest that will allow educators to leverage the "What if?" pedagogy in their own work, as well as downloadable materials suitable for use in both informal and formal learning settings.
Planned studies will identify features that are effective in triggering interest, with an emphasis on groups underrepresented in STEM, and elaborate on the importance of engaging learners in explanatory dialogues and in service of interest development. It is hypothesized that interacting in such novel ways can act as a trigger for interest in astronomy, physics, and potentially other areas of STEM. Design iterations will also investigate different forms of learning supports, such as guidance from facilitators, collaboration, and automated guidance available within the simulations, and identify how features vary with respect to learning contexts. Data collected will include interview and survey data to track interest development, measures of knowledge in astronomy and physics, and log files of simulation use to better understand how behaviors in the simulations align with stated interests. Results of the studies will advance the theoretical understanding of interest development and its relationship to interactive experiences, and will also have practical implications for the deployment of technology in informal settings by identifying features critical for triggering the interest of middle school learners. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE:
-
TEAM MEMBERS:
H Chad LaneJorge Perez-GallegoNeil Comins
Lineage is a comprehensive educational media and outreach initiative that will engage individuals and families in learning about deep time and evolution, helping audiences come to newfound understandings of the connections between the past, present, and future of life on Earth. The project is a partnership between Twin Cities PBS (TPT) and the Smithsonian Institution's National Museum of Natural History and is linked to the opening of that museum's new Deep Time Fossil Hall in June 2019. The project includes a two-hour film for national broadcast on PBS, and a 20-minute short version for exhibition in science centers. The documentaries will show how scientists, using paleontology, genetics, earth science and other disciplines, can reconstruct in detail the origins of living animals like birds and elephants, revealing their ancient past as well as evidence of ecological change that can inform our understanding of Earth today. Extensive educational outreach will include the creation of "Bone Hunter," an innovative VR (Virtual Reality) game designed for family co-play that engages multiple players in the process of paleontology as they piece together a fossil in a digital lab. Bone Hunter and other collaborative educational activities will be deployed at Family Fossil Festivals that will attract multi-generational learners. One such Festival will take place at the Smithsonian Institution in Washington, D.C., while others will be based at geographically diverse institutions that serve underserved rural as well as urban communities. Lineage is a collaboration between national media producers, noted learning institutions and researchers, including Twin Cities Public Television, the Smithsonian Institution / National Museum of Natural History, Schell Games, the Institute for Learning Innovation (ILI), and Rockman et al. One of the project's primary innovations is its exploration of new learning designs for families that use cutting-edge technologies (e.g. the Bone Hunter virtual reality game) and collaborative multi-generational learning experiences that advance science knowledge and inquiry-based learning. An external research study conducted by ILI will investigate how intergenerational co-play with physical artifacts compared to virtual artifacts influences STEM (Science Technology Engineering Mathematics) learning and engagement. The findings will lead to critical strategic impacts for the field, building knowledge about ongoing innovation in the free choice learning space. The project's external evaluation will be conducted by Rockman et al and evaluative findings, as well as the educational materials derived from the project, will be widely disseminated through partnerships with professional and educator groups. Clips from the Lineage film and related learning resources will be hosted on PBS LearningMedia, so educators can incorporate these resources into their classrooms, and students and lifelong learners can explore and discover on their own. The project outcomes will have broad impact on public audiences, deepening and advancing knowledge and understanding about important scientific concepts, and promoting continued, family-based collaborative learning experiences to expand and deepen STEM knowledge. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning.
The project will advance efforts by the American Association for the Advancement of Science and the Institute for Learning Innovation to bring together young adults from communities historically underrepresented in science, technology, engineering, and mathematics (STEM) to collaboratively conduct scientifically driven challenges embedded in a mobile learning tool based upon the AAAS Active Explorer platform. The project will be conducted at the Washington National Mall, San Francisco National Golden Gate Park, and the Boston Harbor Islands National Recreation Area, and will study how a mobile technology used in these settings can facilitate learner engagement in science content; how it can affect young adults' engagement in science-learning processes; and whether interest in learning science and technology has been furthered. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including pathways for broadening access to STEM learning experiences and advancing research STEM learning. Research questions will investigate science learning inequalities by addressing how place-based augmented reality games can connect young adults to scientific practices, including observing science phenomena, analyzing data, and communicating findings; how young adults develop science skills related to their science self-efficacy through participation in augmented reality science exploration; and how mobile technologies and gaming can serve as mediators that enable young adults to improve their science identity. In addition to engaging young adults in science activities at the National Parks and increasing their science skills, the project will provide valuable information to National Park staff and scientists to assist them in designing effective tools, resources and experiences to better engage young adults. Research teams will collect data in the form of digital ethnography, focus groups, activity reports, artifacts, and surveys. The project will document learning and engagement through mobile technology in three urban national parks that will involve 60 young adults at each location, and will create innovative measurement tools to monitor how informal settings can leverage the intersections of the arts and sciences to support student engagement and learning.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. The project will fill a major gap in knowledge regarding why children listen to science podcasts and what impact they have on their STEM learning. Brains On! is an existing podcast for children 6-12 years old that is produced by American Public Media. The podcasts are kid-driven. Kid listeners send in questions and suggest the show topics. Every episode is co-hosted by a different child, who interviews top scientists about their work, sees research done first hand and helps shape the overall arc of the episode. The project team collaborates with a wide variety of scientists to create programming that is both appealing to kids and has scientific merit. Although Brains On! has enjoyed more than 2.4 million downloads collectively of its 50-episode library little is known about why children are drawn to it, how they are using its content, and what the impacts might be for those who listen to the podcast. There has been no previous research to understand why children choose to listen, or what impact it has on their learning. This Pathways project would produce new episodes and collaborate with the Science Museum of Minnesota that would conduct research to fill this large gap in understanding aural learning through podcasts. The Brains On! project has the following goals to create strategic impact: 1) explore and begin to develop knowledge around what makes children's science podcasts, such as Brains On!, appealing and what role they can play in impacting children and their families' science curiosity, learning, and awareness of science careers, and 2) develop a theory of action for the Brains On! podcast that could also inform the development of similar kinds of children's science podcasts. A mixed-methods exploratory research study will be carried out to address these goals. The three overarching research questions are: Who is the audience for Brains On! and what are their motivations for listening to science podcasts? How are Brains On! listeners using the podcast and engaging with its content? What kinds of impacts does Brains On! have on its audiences? The research results, including the theory of action, from the Brains On! exploratory study will benefit the fields of informal science education and public media by beginning to fill a gap in the current knowledge-base around the potential for science children's podcasts to contribute to a wide range of informal science learning outcomes for children and families, as well provide insight into what features of children's science podcasts can lead to those outcomes. The study results may also encourage other public media and informal science education organizations to create their own science podcasts for children, increasing the reach and potential impact of this emerging STEM media resource.
DATE:
-
TEAM MEMBERS:
Molly BloomSanden TottenLauren DeeMarc SanchezAmy Grack Nelson
The widespread accessibility of live streaming video now makes it possible for viewers around the world to watch live events together, including unprecedented, 24/7 views of wildlife. In addition, online technologies such as live chatting and forums have opened new possibilities for people to collaborate from locations around the world. The innovation that the projects provide is bringing these opportunities together, enabling real-time research and discussion as participants observe and annotate live streaming footage; sharing questions and insights through live Q&A sessions; and explore data with interactive visualization tools. Scientists will support the community's research interests, in contrast with traditional models of citizen science in which communities support the work of scientists. This project will enable people from diverse backgrounds and perspectives to co-create scientific investigations, including participants who might not otherwise have access to nature. The evaluation research for this project will advance the understanding of practices that enable interconnected communities of people to participate in more phases of scientific discovery, and how participation affects their learning outcomes. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of science, technology, engineering, and mathematics (STEM) learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. As such, this project will advance a new genre of Public Participation in STEM Research (PPSR). It will also advance scientific exploration using live wildlife cams and establish a database for long-term research to understand how bird behavior and reproductive success are affected by environmental change. This project aims to deepen public involvement in science, building on knowledge and relevance for STEM learning by creating an online learning environment that expands on traditional crowdsourcing models of PPSR in which participants collect data to answer questions driven by scientists. In this project, participants are involved in co-created research investigations, including asking questions, deciding what data are needed, generating data, looking for patterns, making interpretations, reviewing results, and sharing findings. The goals are to 1) create a system that involves the public more deeply in scientific research; 2) develop participants' science skills and interests; 3) increase participants' understanding of birds and the environment; 4) generate new scientific knowledge about wildlife; and 5) advance the understanding of effective project design for co-created PPSR projects at a national scale. Through iterative design and evaluation, the project will advance the understanding of the conditions that foster online collaboration and establish design principles for supporting science and discovery in online learning environments. Through scaling and quasi-experimental studies, the evaluation research will advance the understanding of how learning outcomes may be similar or different for participants engaging in different ways, whether they observe the cams and read about the investigation, process data as contributors, provide some input as collaborators, or join in most or all of the scientific process as co-creators. Despite the popularity of live wildlife cams, with millions of people watching hundreds of cams around the world, little research has been conducted on the use of live cams for collaborative work in formal or informal science education. The infrastructure and open-source framework created for this project will expand the capacity for online communities of people from diverse career backgrounds and perspectives to collaborative on solving personally meaningful questions and contribute to new knowledge. Using this project as a prototype, cam operators from around the world could build networks of cams, enabling future studies with broader scope for comparative biological studies and discoveries. Additionally, it will serve as a model for use in classrooms or for online communities exploring other scientific fields using live-streaming content in collaborative research. By involving scientists and participants from across society as collaborators and co-creators, this project can help increase public engagement with science, technology, and environmental stewardship while advancing the understanding of the natural world and informing public decision-making.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This study will capitalize on the increased availability and affordability of immersive interactive technologies, such as Augmented Reality devices and virtual characters, to investigate their potential for benefitting STEM learning in informal museum contexts. This project will combine these technologies to create an Augmented Reality experience that will allow middle-school youth and their families to meet and assist a virtual crew on a historic ship at the Independence Seaport Museum in Philadelphia. The players in this game-like experience will encounter technologies from the turn of the 20th century, including steam power, electricity, and wireless communication. Crew members and technologies will be brought to life aboard the USS Olympia, the largest and fastest ship in the US Navy launched in 1892. The historic context will be positioned in relation to current day technologies in ways that will enable a change in interest towards technology and engineering in middle school-age youth. This will result in a testbed for the feasibility of facilitating short-term science, technology, engineering and mathematics (STEM) identity change with interactive immersive technologies. A successful feasibility demonstration, as well as the insights into design, could open up novel ways of fostering STEM interest and identity in informal learning contexts and of demonstrating the impact of this approach. The potential benefit to society will rest in the expected results on the basic science regarding immersive interactive technologies in informal learning contexts as well as in demonstrating the feasibility of the integrated approach to assessment.
This project will use a living lab methodology to evaluate interactive immersive technologies in terms of their support for STEM identity change in middle-school age youth. The two-year design-based research will iteratively develop and improve the measurement instrument for the argument that identity change is a fundamental to learning. A combination of Augmented Reality and intelligent virtual agents will be used to create an interactive experience--a virtual living lab--in an informal museum learning exhibit that enables change interests towards technology and engineering and provides short-term assessment tools. In collaboration with the Independence Seaport Museum in Philadelphia, the testbed for the approach will be an experience that brings to life the technologies of the early 20th century aboard a historic ship. Through the application of Participatory Action Research techniques, intelligent virtual agents interacting with youth and families will customize STEM information relating to the ship's mission and performance. Topics explored will make connections with current day technologies and scientific understanding. Mixed-methods will be used to analyze interactions, interview and survey data, will form the basis for assessing the impact on youth's STEM interests. The elicitation method specifically includes assessment metrics that are relevant to the concept of learning as identity change. This assessment, through immersive interactive technologies, will target the priority areas of engagement in STEM as well as the measurement of outcomes.
DATE:
-
TEAM MEMBERS:
Stefan RankAyana AllenGlen MuschioAroutis FosterKapil Dandekar
Considering whether to volunteer to be an NSF AISL reviewer? Here’s some information to help you decide if you are a good fit. Each year, the NSF Advancing Informal STEM Learning program looks for peer reviewers. New reviewers often have questions about the commitment to review. This slide deck is to help you understand what reviewers do and the commitments they make considering issues about time commitment, activities, money, etc.
Access to high quality evaluation results is essential for science communicators to identify negative patterns of audience response and improve outcomes. However, there are many good reasons why robust evaluation linked is not routinely conducted and linked to science communication practice. This essay begins by identifying some of the common challenges that explain this gap between evaluation evidence and practice. Automating evaluation processes through new technologies is then explicated as one solution to these challenges, capable of yielding accurate real-time results that can directly