Hopa Mountain, working in partnership with Montana State University (MSU), will develop innovative and coordinated opportunities for Montana youth to strengthen their STEM (Science, Technology, Engineering and Mathematics) skills and knowledge while preparing them for higher education and careers in health sciences. The overall project goal of HealthMakers is to support rural and tribal youth’s interest and exposure to careers in the sciences while giving them the skills and resources to play leadership roles in increasing healthy family practices in their homes and communities. HealthMakers will achieve meaningful impacts annually through four strategies: (1) Health-focused college preparation programs for 50 teens; (2) Summer academic enrichment programs for 20 teens; (3) Community-based science literacy events for 2,000 children and their families, and (4) Professional development for educators, community members, and parents. Hopa Mountain and MSU will engage youth, educators, community leaders, and parents in training opportunities through HealthMakers. Participants will take part in community-based workshops, college tours, and summer institutes led by MSU faculty, healthcare professionals, Hopa Mountain staff, and their peers. Through these strategic aims, HealthMakers will help create a stronger workforce and inspire students to pursue careers in the sciences.
PUBLIC HEALTH RELEVANCE:
HealthMakers will support the development of health-related outreach and college preparation programs and training resources to create a better-informed workforce for Montana and inspire students to pursue careers in the sciences. These strategic aims and deliverables benefiting rural and tribal families and children, will help create a stronger workforce and inspire students to pursue careers in the sciences. Working together, Hopa Mountain and Montana State University will support rural and tribal youth’s interest and exposure to careers in the health sciences while giving them the skills and resources to play leadership roles in increasing healthy family practices in their communities.
Underrepresented minorities (URMs) represent 33% of the US college age population and this will continue to increase (1). In contrast, only 26% of college students are URMs. In the area of Science Technology, Engineering and Mathematics (STEM), only 15% of college students completing a STEM major are URMs (2). While there have been gains in the percent of Hispanic and Black/African Americans pursuing college degrees, the number of Native American college students remains alarmingly low. In 2013, Native Americans represented only 1% of entering college students and less than 50% finished their degree. Moreover, 1% of students pursuing advanced degrees in STEM-related fields are Native American/Alaska Native. With regards to high school graduation rates, the percent of Native American/Alaska Native students completing high school has decreased with only 51% of students completing high school in 2010 compared to 62 % and 68% for Black and Latino students respectively. While identifying ways to retain students from all underrepresented groups is important, developing programs targeting Native American students is crucial. In collaboration with the Hopi community, a three-week summer course for Native American high school students at Harvard was initiated in 2001. Within three years, the program expanded to include three additional Native American communities. 225 students participated in the program over a 10-year period; and 98% of those responding to the evaluation completed high school or obtained a GED and 98% entered two or four year colleges including 6 students who entered Harvard. This program was reinitiated in 2015 and we plan to build on the existing structure and content of this successful program. Specifically, in collaboration with two Native American communities, the goal of the program is 1) to increase participants’ knowledge of STEM disciplines and their relevance to issues in participants’ communities via a three week case-based summer course for Native American high school students; 2) to help enhance secondary school STEM education in Native American communities by providing opportunities for curriculum development and classroom enhancement for secondary school teachers in the participating Native American communities; and 3) to familiarize students with the college experience and application process and enhance their readiness for college through workshops, college courses and internships. Through these activities we hope to 1) increase the number of Native American students completing high school; 2) increase the number of Native American students applying and being accepted to college; 3) increase the number of Native American students pursuing STEM degrees and careers; 4) increase the perception among Native American students that attending and Ivy plus institution is attainable; 5) increase the feeling of empowerment that they can help their community by pursuing advanced degrees in STEM.
PUBLIC HEALTH RELEVANCE:
This proposal supports a summer program for high school students and teachers from Native American communities. The program goals are to encourage students to complete high school and prepare them for college and to also consider degrees in science, technology, engineering, and math.
Increased exposure to STEM content and career pathways during out-of-school time contexts can significantly extend STEM learning and aspirational interests among middle and high school youth. Using a collective impact approach, the STEM CareerLaunch pilot project tests the feasibility of redesigning a widely used, national youth and career focused program for and by the National Boys & Girls Clubs of America to extend STEM learning and promote awareness, interest, and readiness for STEM-related occupations among youth. STEM CareerLaunch integrates extant STEM programs, such as First Robotics, Girls Who Code and Jason Learning, with newly developed STEM content and opportunities to create and test a comprehensive STEM learning and career program for youth. The results of this pilot will inform a more expansive effort to bring STEM CareerLaunch to an already networked 4,000 Boys & Girls Clubs, reaching over four million youth from predominately underrepresented groups in STEM, and youth participating in other afterschool/summer program throughout the United States.
Approximately 100 youth and informal educators in Boys & Girls Clubs in Fitchburg and Leominster, Massachusetts will participate in this pilot feasibility study. A five-pronged approach will be instituted including: (1) high quality out of school time STEM programming, (2) connected STEM career education, (3) mentorship, (4) professional development for the informal educators, and (5) incentives such as internships and field experiences for youth participants. The developmental evaluation will focus on program implementation, participant outcomes, and scale-up. Data collection methods will include quantitative and qualitative approaches such as baseline student data, project tracking logs, retrospective surveys, focus groups, staff interviews, and observations. A summative evaluation will also be conducted.
This endeavor is led by a collaborative partnership between the National Boys & Girls Clubs of America, Worcester Polytechnic Institute STEM Center, the Fitchburg and Leominster Public School Districts, and others. It is primarily funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It is also co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program which is committed to better understanding and promoting practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, and or mathematics (STEM).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Polar Literacy: A model for youth engagement and learning will foster public engagement with polar science. The project targets middle-school aged underserved youth and polar research scientists, with the goal to increase youth interest in and understanding of Polar Regions, and to hone researchers' science communication skills. The project will develop affordable and replicable ways of bringing polar education to informal learning environments, extend our understanding of how polar education initiatives can be delivered to youth with maximum effect, and design a professional development model to improve the capacity for Polar Region researchers to craft meaningful broader impact activities. Polar Literacy will create and test a model which combines direct participation by scientists in after-school settings, with the use of curated polar research data sets and data visualization tools to create participatory learning experiences for youth. Beyond the life of the project funding, many of the project deliverables (including kits, videos, and other resources) will continue to be used and disseminated online and in person through ongoing work of project collaborators.
Polar Literacy: A model for youth engagement and learning will advance the understanding of informal learning environments while leveraging the rich interdisciplinary resources from polar investments made by the National Science Foundation (NSF). The project's key audiences -- polar researchers, informal educators, and out-of-school time (OST) youth in grades 4-7 (ages 9-13) -- will connect through both place-based and internet-based experiences and work collaboratively to generate a flexible, scalable, and transferable education model. The project will 1) design OST kits and resource guides (focused on Polar Literacy Principles) and include "Concept in a Minute" videos designed to highlight enduring ideas, 2) provide professional development for informal educators, 3) synthesize a club model through adaptation of successful facets of existing informal learning programs, and 4) create Data Jam events for the OST Special Interest (SPIN) clubs and camp programs by modifying an existing formal education model. A research design, implemented at four nodes over three years, will answer three research questions to evaluate the impact of professional development on informal educators, as well as the impact of programs on youth, and the effectiveness of the model. In addition to the project team and collaborators who are informal education practitioners, an advisory board composed of experts in youth programming, informal education, and evaluation will guide the project to ensure that it advances the body of informal STEM learning research.
Polar Literacy is an Advancing Informal STEM Learning (AISL) Innovations in Development project in response to the Dear Colleague Letter: Support for Engaging Students and the Public in Polar Research (NSF 18-103). Polar Literacy is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM (Science, Technology, Engineering, Mathematics) learning in informal environments. This project has co-funding support from the Antarctic section of the Office of Polar Programs.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Janice McDonnellOscar SchofieldCharles LichtenwalnerJason Cervenec
This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project will conduct a feasibility study of an informal youth STEM learning program. High school students from under served communities in New York City will use existing historical, cultural and environmental data to investigate selected UNESCO World Heritage sites. Participants will apply the skills and knowledge they have developed from their analysis of the UNESCO sites and apply them to their local communities. Participants will identify, map, and analyze their own community heritage sites, using relevant citizen science, environmental and cultural data. Throughout the program, the project will involve participants in maker-related activities. Participants will design devices to collect data, explore variables through model making, and communicate findings through models and artistic forms with the to spur both individual and community action for selected heritage sites.
The project will be implemented as a 9-month weekly after school program in Long Island City, New York. Most students from the school will be from low-income families and are youth of color. The research the question for the study is "How does access to STEM increase for historically underrepresented youth populations when culturally relevant curriculum connects citizen science and making practices?" During the first phase of the program, participants will engage with core STEM concepts and making/design processes through an engaging curriculum that explores damaged UNESCO World Heritage Sites. During the second phase, youth will identify, map, and plan enhancements for their own community heritage sites or environmental landmarks. A condensed version of the program will be piloted in the summer with youth from across the city. The Educational Development Corporation will conduct a process and summative evaluation of the project. Process evaluation, which will provide ongoing feedback to the project team, will include document review, observation of program implementation, and interviews with project partners. Summative evaluation will continue these methods, supplemented by pre- and post-participation participant surveys and focus-groups. Validated survey instruments, such as the Growth Mindset Scale, and the Common Instrument Suite (PEAR Institute) will be used. Resources from research and program practices will be disseminated through publications and conference presentations to the education research community, global learning and design fields, and practitioners from after school and other informal learning environments. Participants will share project results with their communities.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Water is an essential, basic need. It is the sustenance for living organisms. For many Native American communities, like the Ojibwe tribes of Minnesota, water is a sacred valuable life source that permeates all aspects of their culture. In these communities, water stories are often used to communicate the value and impact of water on their lives and the lives of others. These stories signal geohydrologic, sociocultural, and sociopolitical societal shifts over time. This pilot study will explore the feasibility of using Native water stories and informal learning experiences to bring water science and issues of water sustainability to youth and public audiences. A significant outcome of the pilot will be a youth-museum-educator co-created public planetarium show and program based on the water stories collected and archived. This approach is particularly novel. It provides an entry into STEM through a dynamic, multimedia context that typically does not engage youth as co-creators of the experiences. Water Values will give voice and a public platform to youth and their communities to elevate ecological issues that are relevant and timely within their own communities. It will also promote scientific discourse through field experiences, interactions with scientists and STEM professions, and community leadership development. Further, this pilot will also test a reciprocal relationship model among its partners. Analogous feasibility research to the Water Values pilot does not exist in the current NSF portfolio. Therefore, the project will not only contribute to the emerging literature base on the intersectionality of STEM, storytelling and Native cultures, but it will also contribute to broader discourse about water health, access, management, and sustainability.
The pilot study will bring together the long standing gidakiimanaaniwigamig program, with its master teachers who are experts in culturally responsive education for Native American youth, and the Bell Museum, which has decades of experience in developing informal STEM learning programs for a broad community. Thirty-five middle school aged youth, five educators, and over 200 community members will engage in the work. During the summer residential program, youth will be exposed to STEM content and important water science concepts through field-based research and a culturally relevant, placed-based curriculum focused on water and communicating water stories. These experiences will be extended during the academic year through weekend science activities that will focus on the compilation of water stories from Native communities, especially from the Ojibwe tribes of Minnesota, and creatively integrating the stories into a fully operational youth-museum co-created public planetarium program. This capstone planetarium show and program will be piloted at the Bell Museum. With regards to the research, four overarching question will guide the study: (1) How does participation in creating water journey stories increase Native students' motivation to learn and engage with STEM, (2) How does participation in creating and presenting water journey stories build change in sociopolitical awareness among Native students? (3) How do Native community members engage with water stories for sociopolitical change and greater participation in STEM? and (4) How does collaboration between gidakiimanaaniwigamig, the Bell, and the UMN impact STEM interest and participation in students and a Native community for transformative experience? Data will be collected from the youth participants, instructors and leaders, and community members. These data will be collected from content surveys, student logs, self-reported intrinsic motivation instrument, observations, and artifacts. The results will be disseminated through various mechanisms within and beyond the target communities. Formative and summative evaluations will inform that work and will be led by an external evaluation firm, Erikkson Associates.
This feasibility study is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Bhaskar UpadhyayDiana DalbottenJonee Brigham
This project responds to the Faculty Early Career Development Program (CAREER) solicitation (NSF 17-537) and is sponsored by the Advancing Informal STEM Learning program at the National Science Foundation. CAREER: Talking Science: Early STEM Identity Formation Through Everyday Science Talk (Talking Science) addresses the critical issue of the development of children's identification with science, technology, engineering and mathematics (STEM) fields and the limited knowledge about the development of STEM identity through conversations, particularly among very young children from underserved and underrepresented populations. Talking Science is based on the premise that individuals who develop STEM interests and identify with STEM at a young age tend to participate in STEM fields more so than individuals who develop these later in life. This study investigates how STEM-related conversations outside of school with friends and family during formative years (i.e., 7 - 12 years old) shape youths’ STEM identity later in life and their engagement in STEM. The goals of Talking Science are (1) To develop an understanding of the features and context of conversations held between children and their caregivers/teachers that support STEM identity development in both majority and Hispanic/Latine populations; and (2) To translate the research outcomes into informal STEM learning practices that positively contribute to young people's perceptions of STEM fields in their future.
To achieve its goals, this work addresses the following research questions: (1) What is the content, context, and structure of STEM-related conversations with friends and family that youth ages 7 - 12 participate in?; (2) How do the features of conversation (i.e., content, context, structure) relate to the development of youth's STEM interests, sense of recognition as STEM people, and self-identification with STEM?; (3) How do the cultural values and science talk experiences of Hispanic/Latine youth shape conversation features related to youth's STEM interests, sense of recognition as STEM people, and self-identification with STEM?; and (4) Does professional development for practitioners that focuses on encouraging youth to engage in STEM-related conversations with friends and family positively contribute to youth's STEM interest, sense of recognition, and self-identification with STEM? To address these questions, the study adopts a qualitative research approach that applies phenomenological strategies in research design, data collection, and analysis to allow for exploration of the meaning of lived experiences in social and cultural contexts. Participants include elementary-age youths (ages 7 - 12) and caregivers from socially, culturally, linguistically, and economically diverse backgrounds. To inform the development of interview protocols in terms of the kinds of childhood talk that leave a long-term impact on students, including the kinds of talk experiences remembered by students who choose or persist towards a STEM career in college, the project also recruits college students pursuing STEM degrees as participants. Data gathering and interpretation strategies include surveys and interviews. The outcomes of this research will constitute a theoretical framework and models that guide the development of both professionals and programmatic activities at informal learning institutions, particularly around scaffolding participation in STEM through family science talk.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This Research in Service to Practice project will bring together representatives from six long-standing youth programs, experts in the field of out-of-school-time youth programming, and education researchers to collaboratively explore the long-term (15-25 years) impact of STEM-focused, intensive (100+ hours/year), multi-year programming. The six partnering programs have maintained records with a combined total of over 3000 alums who participated between 1995 and 2005. This four-year research project uses an explanatory, sequential, mixed-method design to carry out four steps: (1) identify and describe the impact on the lives of program alums who are now ages 30 to 45; (2) identify causal pathways from program strategies to long-term outcomes; (3) develop an understanding of these pathways from the perspective of the people who experienced them; and (4) disseminate this knowledge broadly to those associated with STEM-focused programming. Research questions include: How did these programs affect youth's lives as they progressed toward and into adulthood? What program strategies and what participant attributes contributed most to the staying power of these effects? What life events and social structures supported and inhibited participant outcomes? This project describes the effects, identifies the causal pathways, and produces materials that programs can use for both strategic planning and generating support resources. Additionally, this project provides research methodology for organizations that want to conduct their own retrospective research and lays a foundation for a more comprehensive study that includes programs without historical documentation. The project aligns with NSF's Big Idea "NSF INCLUDES: Transforming education and career pathways to help broaden participation in science and engineering" by providing essential information about the long-term effect of interventions on educational and career pathways in STEM.
The project's approach involves three phases: (1) research preparation, (2) causal structural modeling of survey data from approximately 2,000 respondents, and (3) rich qualitative follow-up. Human ecological and self-determination theories inform data collection and analyses at every project phase. In the preparation phase, program staff complete program profiles from an historic perspective by identifying program strategies that may have included, for example, scientific research, robotics development, teaching science in informal settings, and working in scientific research labs. In the quantitative phase, the project will recruit alums who attended one of the 6 youth programs between 1995 and 2005 to submit a current resume and complete an online questionnaire, based on the following scaled variables: retrospective recall of basic psychological need satisfaction and frustration in relation to perceived program strategies; STEM identity (at three time periods: pre-program; post-program; and current); current well-being; career influences; and career barriers. The questionnaire also includes open-ended questions about life events related to the following categories: family and friends, school and work, and living conditions. Analysis of the questionnaire will lead to development of a causal structural model. In the qualitative phase, data will be collected from a purposefully selected sample of 30 alums based on findings from the quantitative phase. Methods include interviews, photo journals, and STEM pathways maps. Analysis of interviews, resumes, and photo journals take place within the structure of basic psychological need satisfaction and motivational quality across ecological systems over time. Qualitative analysis uses the constant comparative method, and findings are used to update and refine the final causal structural model and inform overall findings, conclusions, and recommendations of the project.
Since the 1990s, out-of-school time programs have engaged youth from underserved communities in STEM learning and in building interest in STEM careers, yet these programs often based on untested assumptions that participation has lasting effects on education, career, and life choices related to STEM. This Research in Service to Practice project has the potential to 1) guide practitioners in program improvement and improved program outcomes; 2) provide insight into achieving program goals, such as equity, increased well-being of participants, an informed citizenry, and a diversified STEM workforce; and 3) inform multi-stakeholder decision-making with respect to this type of programming. This research also builds a foundation of research data collection and analysis methods to guide and support future research on long term-impacts and youth STEM programming. Dissemination strategies include a website, webinars, video, infographics, conference presentations, and written reports to reach stakeholders including practitioners, researchers, administrators, and funders.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The PEAR Institute: Partnerships in Education and Resilience at McLean Hospital and Harvard Medical School conducted a year-long study of the Tulsa Regional STEM Alliance (TRSA). Funded by the Overdeck Family Foundation, STEM Next Opportunity Fund, and the Charles and Lynn Schusterman Family Foundation, this study is the first of its kind among 68 national and international STEM Ecosystems.
DATE:
TEAM MEMBERS:
Kristin Lewis-WarnerPatricia AllenGil Noam
An in-depth case study of one of America’s first STEM Learning Ecosystems in Tulsa, Oklahoma, conducted by researchers at The PEAR Institute: Partnerships in Education and Resilience, finds that strong leadership, deep partnerships, and data-informed methods have led to the creation of diverse, high-quality, STEM-rich learning opportunities for Tulsa’s youth. Additionally, these efforts improved the capacity of STEM educators through high-quality professional development and supported youth pathways to STEM careers by increasing mentoring opportunities for STEM professionals.
These findings
DATE:
TEAM MEMBERS:
Kristin Lewis-WarnerPatricia AllenGil Noam
This game is used to measure whether program participation helps to evelop the child’s ability to accurately predict or infer an animal’s emotional state.