In-class projects can be an effective way for students to learn subject material that relates to authentic problems people address outside of classrooms. Jurow investigated middle-schoolers’ participation in an in-school math project based on the premise of creating a research station in Antarctica. Students’ engagement with the project and meaning making with math content shifted as students navigated through the different and often competing figured worlds of the classroom and “Antarctica.”
Researchers Maltese, Melki, and Wiebke investigated when lasting interest in STEM is sparked and how it is maintained by comparing the remembrances of adults who did and did not persist in STEM. Both groups said that they became interested in STEM early, usually by Grade 6. Those who persisted in STEM were more likely than those who did not to say that they had always been interested in STEM. Parents and teachers were early influences for those who stayed in STEM fields.
One challenge in scaling up effective educational programs is how to adjust implementation to local contexts. One solution that the authors Penuel, Fishman, Cheng, and Sabelli propose is “design-based implementation research,” (DBIR) in which researchers and practitioners collaboratively identify problems and strategies during implementation while learning from this process to support innovations in new contexts.
The Dimensions of Success (DoS) observation tool defines and provides rubrics (with levels 1-4) for 12 dimensions that were developed to measure STEM program quality in out-of-school time. This technical report summarizes the development of the instrument and findings from our initial study that included 284 observations in the field across 58 STEM programs in two geographic regions (New England and the Midwest). Data were collected by 46 trained observers who observed in pairs. This report is the initial step in developing a validity argument for the instrument.
DATE:
TEAM MEMBERS:
Ashima Mathur ShahCaroline WylieDrew Gitomer
The Dimensions of Success observation tool, or DoS, pinpoints twelve indicators of STEM program quality in out-of-school time. It was developed and studied with funding from the National Science Foundation (NSF) by the Program in Education, Afterschool and Resiliency (PEAR), along with partners at Educational Testing Service (ETS) and Project Liftoff. In 2014, a technical report was released, describing the tool and its psychometric properties (http://www.pearweb.org/research/pdfs/DoSTechReport_092314_final.pdf). The DoS observation tool focuses on understanding the quality of a STEM activity in an out-of-school time learning environment and includes an explanation of each dimension and its key indicators, as well as a 4-level rubric with descriptions of increasing quality. Today, over 700 people have been trained to use the DoS tool, and over 12 state networks have adopted DoS to measure the quality of their afterschool STEM programming.
DATE:
-
TEAM MEMBERS:
Program in Education, AfterschoolDr. Ashima ShahDrew Gitomer
In order to attract and retain underrepresented student groups (USGs) who aspire to major in STEM fields, educators recognize that science and math instruction must improve and also develop students’ non-cognitive and social-emotional skills. Foremost in that effort is Xavier University of Louisiana, a historically black and Catholic university located in the heart of New Orleans. Throughout the past thirty years, Xavier compiled an extraordinary record as a top producer of African Americans who receive bachelor’s degrees in biology, chemistry, and physics. Although Xavier enrolls only
This longitudinal study examined factors that contribute to the persistence of underrepresented racial minority (URM) undergraduates in STEM fields. The primary source of data came from the Cooperative Institutional Research Program’s 2004 The Freshman Survey (TFS) and 2008 College Senior Survey (CSS). The sample included 3,670 students at 217 institutions who indicated on the TFS that they intended to major in a STEM field, 1,634 of whom were underrepresented minority (URM) students. Findings indicate that Black and Latino undergraduates were significantly less likely to persist in STEM
DATE:
TEAM MEMBERS:
Mitchell ChangJessica SharknessSylvia HurtadoChristopher Newman
During the first EU-funded project EUSCE/X (European Science Communication Events / Extended), a "White Book" was developed in 2005, containing the experiences of exploring 21 European science engagement events like science festivals. The White Book has 13 chapters ranging from "purpose and philosophy" across "management", "education", "funding" to "European dimension".
This volume explores how technology-supported learning environments can incorporate physical activity and interactive experiences in formal and informal education. It presents cutting-edge research and design work on a new generation of "body-centric" technologies such as wearable body sensors, GPS tracking devices, interactive display surfaces, video game controller devices, and humanlike avatars. Contributors discuss how and why each of these technologies can be used in service of learning within K-12 classrooms and at home, in museums and online. Citing examples of empirical evidence and
The project, called Experimenting With Storytelling, involved working with four schools in East London and Northamptonshire, United Kingdom. Each after school session, with elementary school children and their parents, consisted of a cultural story or folktale (the ‘storytelling’ part) which had some science in it followed by an associated practical activity (the ‘experimenting’ part).
The Chester County intermediate Unit developed strong collaborations between school districts and informal education providers across Pennsylvania to engage thousands of students in high quality learning experiences. NASA will support these partnering institutions as they engage local teachers in professional development in high quality instruction during the school year. Requirements for both summer activities and school year activities necessitates cooperative agreements with secondary education partners to ensure fulfilling participation requirements such as reaching a large number of middle school students and teachers. The CCIU has many potential partners in the PA SoI project who have expressed interest in participating; including Carnegie-Mellon Robotics Academy, Cheyney University, Widener University, the Philadelphia School District, the Pennsylvania Department of Education and the NASTAR flight facility. With a renewed effort by the CCIU the PA Summer of Innovation Program will be implemented through the PAIU NET to provide quality STEM programming to students and STEM training to teachers while monitoring student outcomes. In Eastern PA camps will be held August 1-5 at 36 sites in the 20 participating school districts statewide. In Chester County, camp sites include Gordon Elementary School and Pope John Paul II Regional Catholic School. Additionally several NASA SoI Mini-Camps were held increasing the breath and depth of the program's impact.
DATE:
-
TEAM MEMBERS:
Chester County Intermediate UnitJohn Hall
To effectively address problems in education, research must be shaped around a problem of practice. Reorienting research and development in this way must overcome three obstacles. First, the incentive system for university researchers must be changed to reward research on problems of practice. Second, the contexts must be created that will allow the complexity of problems of practice to be understood and addressed by interdisciplinary teams of researchers, practitioners, and education designers. And third, meaningful experimentation must become acceptable in school systems in order to develop