Informal STEM learning experiences (ISLEs), such as participating in science, computing, and engineering clubs and camps, have been associated with the development of youth’s science, technology, engineering, and mathematics interests and career aspirations. However, research on ISLEs predominantly focuses on institutional settings such as museums and science centers, which are often discursively inaccessible to youth who identify with minoritized demographic groups. Using latent class analysis, we identify five general profiles (i.e., classes) of childhood participation in ISLEs from data
DATE:
TEAM MEMBERS:
Remy DouHeidi CianZahra HazariPhilip SadlerGerhard Sonnert
In partnership with the Pasadena and Los Angeles Unified School Districts, the Armory Center for the Arts will develop and implement comprehensive visual art-math and visual art-science curricula for grades two through five at Title I elementary schools. The curricula will be developed in conjunction with Armory teaching artists and educators, and will align with the Common Core Standards for math and science, and with the National Core Visual Arts Standards. The museum will deliver the program in 48 classrooms over a three-year period. Professional development, paired with in-class program modeling, will enable participating teachers to implement arts integration strategies into their teaching practice, with an overall goal of creating a sustainable and long-term impact on student learning. An external evaluator will oversee program assessment in the schools. The museum will post sample lessons from each curriculum online to demonstrate the style and scope of the program for possible use by additional school districts.
Many studies have examined the impression that the general public has of science and how this can prevent girls from choosing science fields. Using an online questionnaire, we investigated whether the public perception of several academic fields was gender-biased in Japan. First, we found the gender-bias gap in public perceptions was largest in nursing and mechanical engineering. Second, people who have a low level of egalitarian attitudes toward gender roles perceived that nursing was suitable for women. Third, people who have a low level of egalitarian attitudes perceived that many STEM
DATE:
TEAM MEMBERS:
Yuko IkkataiAzusa MinamizakiKei KanoAtsushi InoueEuan McKayHiromi M. Yokoyama
Data are the workhorses of the scientific endeavor and their use is rapidly evolving (Haendel, Vasilevsky, and Wirz 2012). Ask almost any scientist about their work, and the conversation will involve the data they collect and analyze. The use of data in science is often captured in science classrooms as an ill-defined link between math and science that may not reflect authentic data practices (Tanis Ozcelik and McDonald 2013). Students often find themselves collecting data to confirm obvious conclusions within highly structured labs, and data become a way for students to demonstrate the
This paper examines STEM-based informal learning environments for underrepresented students and reports on the aspects of these programs that are beneficial to students. This qualitative study provides a nuanced look into informal learning environments and determines what is unique about these experiences and makes them beneficial for students. We provide results of a qualitative research study conducted with the Mathematics, Engineering, Science Achievement (MESA) program, an informal learning environment that has proven to be effective in recruiting, retaining and encouraging
DATE:
TEAM MEMBERS:
Cameron DensonChandra Austin StallworthChristine HaileyDaniel Householder
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. This Research in Service to Practice project will address the issues around Informal Education of rural middle school students who have high potential regarding academic success in efforts to promote computer and IT knowledge, advanced quantitative knowledge, and STEM skills. Ten school districts in rural Iowa will be chosen for this study. It is anticipated that new knowledge on rural informal education will be generated to benefit the Nation's workforce. The specific objectives are to understand how informal STEM learning shapes the academic and psychosocial outcomes of rural, high-potential students, and to identify key characteristics of successful informal STEM learning environments for rural, high-potential students and their teachers. The results of this project will provide new tools for educators to increase the flow of underserved students into STEM from economically-disadvantaged rural settings.
The President's Council of Advisors on Science and Technology predicts a rapid rise in the number of STEM jobs available in the next decade, describing an urgent need for students' educational opportunities to prepare them for this workforce. In 2014, 62% of CEOs of major US corporations reported challenges filling positions requiring advanced computer and information technology knowledge. The project team will use a mixed methods approach, integrating comparative case study and mixed effects longitudinal methods, to study the Excellence program. Data sources include teacher interviews, classroom observations, and student assessments of academic aptitude and psychosocial outcomes. The analysis and evaluation of the program will be grounded in understanding the local efforts of school districts to build curriculum responsive to the demands of their high-potential student body. The project design, and subsequent analysis plan, utilizes a mixed methods approach, incorporating case study and longitudinal quantitative methods to analyze naturalistic data and build robust evidence for the implementation and impact of this program. This project will provide significant insights in how best to design, implement, and support informal out-of-school learning environments to broaden participation in the highest levels of STEM education and careers for under-resourced rural students.
This chapter reviews four projects that reflect the principles of design-based implementation research (DBIR) in an effort to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with DBIR.The goal of this chapter is to highlight a range of relevant theoretical and methodological perspectives and tools that can inform future work associated with design-based implementation research (DBIR). As Penuel, Fishman, Cheng, and Sabelli (2011) described, DBIR entails engaging “learning scientists, policy researchers, and
DATE:
TEAM MEMBERS:
Jennifer RussellKara JacksonAndrew KrummKenneth Frank
With funding from the National Science Foundation, NOVA/WGBH Boston with the participation of 14 U.S. and 4 international science museums have produced an IMAX/OMNIMAX film titled, Special Effects. The 40-minute film shows the techniques and methods that special effects filmmakers use to create movie illusions. Multimedia Research implemented a summative evaluation with students focused on the following major outcomes: To what extent did the program appeal to student viewers? To what extent did the program achieve its intended viewing goals? Did the implementation of school-based activities
Researchers examined whether engineering activities and lessons can help students apply science and math content in real-world contexts and gain insights into the professional activities and goals of engineers.
Moving Beyond Earth Programming: “STEM in 30” Webcasts. The Smithsonian’s National Air and Space Museum (NASM) will develop nine “STEM in 30” webcasts which will be made available to teachers and students in grades 5-8 classrooms across the country. The primary goal of this program is to increase interest and engagement in STEM for students. Formative and summative evaluations will assess the outcomes for the program, which include the following:
Increased interest in STEM and STEM careers, Increased understanding of science, technology, engineering and mathematics (STEM), Increased awareness and importance of current and future human space exploration, and Increased learning in the content areas.
This series of live 30-minute webcasts from the National Air and Space Museum and partner sites focus on STEM subjects that integrate all four areas. The webcasts will feature NASA and NASM curators, scientists, and educators exploring STEM subjects using museum and NASA collections, galleries, and activities. During the 30-minute broadcasts, students will engage with museum experts through experiments and activities, ask the experts questions, and answer interactive poll questions. After the live broadcasts, NASM will also archive the webcasts in an interactive “STEM in 30” Gallery.
When it comes to STEM education, the nation’s K–12 public schools cannot do it all. The nature of 21st century proficiency in science, technology, engineering, and mathematics is too complex for any single institution. The good news is that schools do not have to do it alone. Museums, zoos, nature centers, aquariums, and planetariums are among the several thousand informal science institutions in the United States that regularly engage young people in observing, learning, and using STEM knowledge and skills. Providing a richness of resources unavailable in any classroom, informal science
DATE:
TEAM MEMBERS:
Community for Advancing Discovery Research in Education (CADRE)
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE:
-
TEAM MEMBERS:
James DiamondNew York City Hive Learning NetworkMOUSEDigitalMeKatherine McMillan