This paper presents synthesized research on where XR is most effective within a museum setting and what impact XR might have on the visitor experience.
This short (approximately 2-3 hours), self-paced non-credit learning module is designed for those new to conducting research in communities impacted by energy development. You will learn about the concept of “research fatigue” and become more prepared for fieldwork by learning what to expect when you visit energy-impacted communities.
Access is free for students, researchers and those living in or serving communities impacted by energy development.
Participants who complete the online course can a digital badge called Understanding Research Fatigue. Earners of this certification will
DATE:
TEAM MEMBERS:
Suzi TaylorJulia Hobson HaggertyKristin SmithRuchie Pathak
This workbook / planning guide was designed as an outreach tool to support students and early-career researchers who are studying the social impacts of energy development and wish to better understand and mitigate “research fatigue,” a state in which citizens of a community who are already experiencing massive change may be exhausted by additional attention from researchers, the media and others outside the community.
The workbook can be used as a stand-alone resource or as a complement to the Understanding Research Fatigue online module (https://eu.courses.montana.edu/CourseStatus.awp
DATE:
TEAM MEMBERS:
Suzi TaylorJulia Hobson HaggertyJeffrey JacquetGene TheodoriKathryn Bills Walsh
Reflecting on the practice of storytelling, this practice insight explores how collaborations between scholars and practitioners can improve storytelling for science communication outcomes with publics. The case studies presented demonstrate the benefits of collaborative storytelling for inspiring publics, promoting understanding of science, and engaging publics more deliberatively in science. The projects show how collaboration between scholars and practitioners [in storytelling] can happen across a continuum of scholarship from evaluation and action research to more critical thinking
DATE:
TEAM MEMBERS:
Michelle RiedlingerJenni MetcalfeAyelet Baram-TsabariMarta EntradasMarina JoubertLuisa Massarani
Using their imagination and creativity, inventors have made significant contributions to our world throughout the course of human history. In recent times, a growing community has responded to the need for more intensive research on Invention Education and within the last several years has begun organizing itself around collaborative action that will accelerate the uptake and practice of Invention Education. The purpose of this document is to provide a comprehensive community-driven framework and set of principles for Invention Education that can support its growth within formal and informal
The Researching Invention Education white paper compiles contributions from a community of individuals and organizations working in Invention Education (IvE) in the United States. IvE is a term that refers to the practice of teaching students how to problem-solve and think like inventors in order to become positive change-makers in the world. The paper was written by researchers interested in IvE who attended the 2018 InventEd convening hosted by The Lemelson Foundation. The group worked together for a year to publish their findings that were then uncovered at the 2019 InventEd convening in
DATE:
TEAM MEMBERS:
Audra SkukauskaiteStephanie CouchLeslie Flynn
Tinkering is an approach to learning increasingly adopted within informal learning settings to engage people with STEM learning (science, technology, engineering and mathematics). It builds on ideas in inquiry-based pedagogy and exploits some of the most engaging and motivational elements of learner-centered, immersive and hands-on learning approaches to develop 21st century skills such as critical thinking, creativity, collaboration, problem solving, communication, responsibility, self-confidence, digital literacy and entrepreneurship. In a Tinkering activity, the learner is presented with
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its after-school program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering after-school programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015.
Education Development Center is conducting the formative and summative evaluation of the project. To assess the
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its after-school program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering after-school programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015.
Education Development Center is conducting the formative and summative evaluation of the project. To assess the
This project, an NSF INCLUDES Design and Development Launch Pilot, managed by the University of Nevada, Reno, addresses the grand challenge of increasing underrepresentation regionally in the advanced manufacturing sector. Using the state's Learn and Earn Program Advanced Career Pathway (LEAP) as the foundation, science, technology, engineering and mathematics (STEM) activities will support and prepare Hispanic students for the region's workforce in advanced manufacturing which includes partnerships with Truckee Meadows Community College (TMCC), the state's Governor's Office of Economic Development, Charles River Laboratories, Nevada Established Program to Stimulate Competitive Research (Nevada EPSCoR) and the K-12 community.
The expected outcomes from the project will inform the feasibility, expandability and transferability of the LEAP framework in diversifying the state's workforce locally and the STEM workforce nationally. Formative and summative evaluation will be conducted with a well-matched comparison group. Dissemination of project results will be disseminated through the Association for Public Land-Grant Universities (APLU), STEM conferences and scholarly journals.
DATE:
-
TEAM MEMBERS:
David ShintaniJulie EllsworthKarsten HeiseRobert StachlewitzRegina Tempel
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.
While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE:
-
TEAM MEMBERS:
Amy TuiningaAshwani VasishthPankaj Lai