The Museum of Science, Boston (MOS) and its primary collaborators, the Science Museum of Minnesota (St. Paul, MN) and the Exploratorium (San Francisco, CA), are continuing and expanding the Nanoscale Informal Science Education Network (NISE Net), which has been in operation since 2005. NISE Net has established a national infrastructure of over one-hundred hands-on science centers and universities within seven regional hubs with the goal of fostering public awareness, engagement and understanding of nanoscale science and engineering (NSE). As part of this undertaking, NISE Net partners have: - created a nation-wide set of annual events called NanoDays; - developed dozens of interactive exhibits, media-based products, programs, and public forums based on NSE; - generated new knowledge about the design for learning about NSE, its applications, and societal implications; - produced a network that involves informal educators and researchers; and - developed a Web site for professionals, www.nisenet.org, that includes several resources for educators and researchers, including a catalog of educational products. During the next five years (2010 - 2014), NISE Net will continue to develop new educational products, deepen the involvement of current partnerships in nanoscale informal science education, and expand the number of partners overall to 300 organizations. The advisory committee, content steering committee, regional hubs, and other work groups will continue to develop collaborative relationships between museums and university-based NSE research centers, including Materials Research Science and Engineering Research Centers (MRSECs) and Nanoscale Science and Engineering Centers (NSECs). A Diversity, Equity, and Access group will actively support, foster, and encourage the NISE Net\'s efforts to reach diverse audiences with regard to geography, dis/ability, gender, race/ethnicity, language, and income. Four research studies will be conducted: Partnership and Network, Institutional Change, Learning Progressions, and Evidence-Based Decision Making.
The American Museum of Natural History, the Cornell Lab of Ornithology, and the National Audubon Society are partnering to organize a workshop for scientists, educators, and community members involved in conservation-oriented Public Participation in Scientific Research (PPSR) projects. PPSR projects have the potential to advance scientific discovery by engaging volunteers in large-scale data collection and analysis, enabling volunteers to conduct scientific inquiry, and promoting stakeholder involvement in policymaking. Despite PPSR's potential, educators need to understand what mechanisms best nurture the development of skills, attitudes, and behaviors of citizen scientist volunteers. Workshop participants will share experiences, lessons learned, protocols and tools, and develop an agenda for answering still unanswered questions about advancing informal science education goals via PPSR activities. Topics for workshop sessions include models of PPSR projects; PPSR data for conservation biology; conservation psychology; integrating PPSR into conservation planning; and emerging technologies for public participation in PPSR projects. The goals of the project are to (1) enhance the practice of biodiversity science, (2) increase the potential for biodiversity conservation projects to meet educational goals, (3) allow scientists to further engage in and contribute to answering large-scale research questions, and (4) prepare the groundwork for establishing more public participation projects as part of museum public programs. The project's objectives are to identify conditions under which PPSR projects can be most useful for biodiversity conservation, explore the impact of PPSR in encouraging volunteers to become interested in and stewards of nature, identify strategies and mechanisms for expanding the reach of PPSR to new audiences, and create a network for PPSR organizers.
Portal to the Public is a program designed to assist informal science education (ISE) institutions as they seek to bring scientists and public audiences together in face-to-face public interactions that promote appreciation and understanding of current scientific research and its application. Led by Pacific Science Center (WA), in collaboration with Explora (NM), the North Museum of Natural History and Science (PA) and the Institute for Learning Innovation (MD), the program model was implemented and evaluated at five additional museums and science centers during 2007-2011. The project goals were to create a flexible and scalable guiding framework that would support ISE institutions build relationships with their local scientific community, design professional development workshops for scientists, and create public program formats featuring scientists. The project included thorough research and evaluation of the guiding framework, dissemination process, and implementation at expansion sites. The Portal to the Public project team has produced an Implementation Manual as a guide for institutions planning to implement a Portal to the Public-type program, available for download at the project website (http://www.pacificsciencecenter.org/Portal-to-the-Public/portal). It includes the Catalog of Professional Development Elements, a practical guide to creating and facilitating professional development experiences for scientists.
Frozen Planet is a landmark multi-media seven-part television series, with complementary website, whose goal is to inform and inspire audiences about the environment and ecology of the Polar Regions and the science being carried out there. The series will highlight multiple disciplines including climatology, volcanology, geology, glaciology, as well as natural history. Frozen Planet will be produced in High Definition by the BBC Natural History Unit and Discovery Communications for broadcast worldwide on Discovery Channel in 2011. The proposal to NSF is for 1) field support for filming various NSF-supported research efforts in Antarctica and 2) funding to cover evaluation of the project's intended learning impacts in the United States. Goodman Research Group will conduct the summative evaluation to measure learning impacts centered on the audience's understanding of the polar environment, the science being undertaken there, and the implication of the new scientific findings to their everyday lives. For scientific and field support, the production team is collaborating with many organizations in addition to NSF's Office of Polar Programs including the British Antarctic Survey, the Canadian Polar Continental Shelf Project, and NASA. Through repeated broadcast, video-on-demand, the website, and DVDs, the project will provide a comprehensive, enduring resource. The project is anticipated to reach more than 65 million people across the U.S.
DATE:
-
TEAM MEMBERS:
Dan ReesCarlos GutierrezChrstine Weber
Led by Washington University, Making Natural Connections: An Authentic Field Research Collaboration (DRL-0739874), is a series of two field-based informal science education programs in environmental biology targeting St. Louis area teenagers. The project aims for engagement of science research institutions and career scientists in the execution of informal science education programming, bringing real and dynamic context to the science content and allowing for deep and transparent career exploration by teenage participants. Project goals include (1) providing a model for integration of informal science education into the research and restoration projects at biological field stations and nature reserves, (2) communicating current environmental biology research to audiences outside the research community, and (3) influencing the entry of pre-college students into the science career pipeline. The project is a collaborative partnership between Washington University’s Tyson Research Center and the Missouri Botanical Garden’s Shaw Nature Reserve. The Shaw Institute for Field Training (SIFT) program trains St. Louis area high school students in scientific exploration of the natural world at Shaw Nature Reserve. During a one-week training session in June, teens are introduced to a variety of Missouri ecosystems and gain skills necessary to conduct field research, including plant and animal identifications, biotic sampling and census techniques, testing of abiotic factors, and training in the use of maps, compass and GPS. During the rest of the summer and school year, teens are involved in important research and restoration activities at Shaw, Tyson Research Center and other field research sites in the St. Louis area. Fieldwork opportunities may include invasive species management, prairie reconstruction, plant and animal inventories, and prescribed burns. The Tyson Environmental Research Fellowships (TERF) program places high school students as summer interns on ecology and environmental biology research teams at Tyson Research Center. Selected teen participants have successfully completed the SIFT program and apply their field skills to ongoing research projects at Tyson and other partnering research sites. During the summer, the four-week program provides teens with exposure to a variety of field science experiences and skills. TERF teens work alongside university scientists, post-doctoral researchers, graduate students and undergraduate students. The TERF program provides a cultural apprenticeship in university-based environmental biology research and training in scientific communication. It is an advanced summer experience modeled on the undergraduate research internships offered at Tyson. During the following school year, participants work on posters and presentations for symposia at Washington University and Tyson and at community fairs, and their posters are displayed at Shaw Nature Reserve. A national dissemination workshop for informal science educators, high school biology teachers, and research scientists provides the necessary materials and background to replicate the project design in other locales. The summative evaluation will address impacts on teenage participants (engagement, cognitive and emotional support, competence, career viability, experiential learning) and professional audiences (implementation of teen program, program components, impacts on mentoring scientists). The strategic impact of this project results from the integration of teenage immersion experiences into research activities at a university-based facility. This model of informal science training activities leading into participation in authentic research may be transferable to other STEM disciplines.
DATE:
-
TEAM MEMBERS:
Phyllis BalcerzakPeter RavenSusan FlowersKim Medley
Michigan Technological University will collaborate with David Heil and Associates to implement the Family Engineering Program, working in conjunction with student chapters of engineering societies such as the American Society for Engineering Education (ASEE), the Society of Hispanic Professionals (SHP) and a host of youth and community organizations. The Family Engineering Program is designed to increase technological literacy by introducing children ages 5-12 and their parents/caregivers to the field of engineering using the principles of design. The project will reach socio-economically diverse audiences in the upper peninsula of Michigan including Native American, Hispanic, Asian, and African American families. The secondary audience includes university STEM majors, informal science educators, and STEM professionals that are trained to deliver the program to families. A well-researched five step engineering design process utilized in the school-based Engineering is Elementary curriculum will be incorporated into mini design challenges and activities based in a variety of fields such as agricultural, chemical, environmental, and biomedical engineering. Deliverables include the Family Engineering event model, Family Engineering Activity Guide, Family Engineering Nights, project website, and facilitator training workshops. The activity guide will be pilot tested, field tested, and disseminated for use in urban, suburban, and rural settings. Strategic impact will result from the development of content-rich engineering activities for families and the dissemination of a project model that incorporates the expertise of engineering and educational professionals at multiple levels of implementation. It is anticipated that 300 facilitators and 7,000-10,000 parents and children will be directly impacted by this effort, while facilitator training may result in more than 27,000 program participants.
DATE:
-
TEAM MEMBERS:
Neil HutzlerEric IversenChristine CunninghamJoan ChaddeDavid Heil
resourceprojectProfessional Development, Conferences, and Networks
This conference proposal, organized by the National Center for Science and Civic Engagement, is convening professionals both in higher education and in informal science education, all of whom have done work or are seriously interested in the interface of science, society and civic engagement. The purpose of the conference is to build bridges between and explore new connections among these communities around their mutual interests in emerging educational practices that promote self-directed learning in STEM through connections with matters of civic consequence.
Three and a half billion people currently live in cities, and this is projected to rise to six billion by 2050. In much of the world, cities are warming at twice the rate of rural areas and the frequency of urban heat waves is expected to increase with climate change throughout the 21st century. Addressing the economic, environmental and human costs of urban heat islands requires a better understanding of these complex systems from many disciplinary perspectives. The goal of this four-year Urban Heat Island Network is to advance multidisciplinary understanding of urban heat islands, examine how they can be ameliorated through engineering and design practices, and share these new insights with a wide array of stakeholders responsible for managing urban warming so that the health, economic, and environmental impacts can be reduced.
DATE:
-
TEAM MEMBERS:
Peter SnyderPatrick HamiltonBrian StoneTracy TwineJ. Marshall Shepherd
resourceprojectProfessional Development, Conferences, and Networks
This award is funded under NSF's Science, Engineering, and Education for Sustainability (SEES) activities, which aim to address the challenges of creating a sustainable world. Research Coordination Network (RCN) CE3SAR (Climate, Energy, Environment, and Engagement in Semiarid Regions) is a comprehensive partnership of researchers at South Texas regional institutions and major research universities elsewhere advancing knowledge of science, engineering and education for sustainability (SEES). The network will develop and test an innovative model for conducting interdisciplinary, region-specific, sustainability research closely tied to the needs and interests of highly-engaged local stakeholders. RCN CE3SAR will aggregate regional research capacities specific to sustainability in semiarid climates contiguous to the Gulf of Mexico while leveraging research expertise infused from outside the region. Geographic information science (GIS) will play a key role in the process of integrating layers of scientific data, producing scientific insight and presenting new ideas, new research directions and new scientific knowledge to regional stakeholders as well as the scientific community. The network will align regional capacities that heretofore were largely disconnected and bring focus and synergy to a range of research that will profoundly impact the region and its socioeconomic future. The network will engage and educate regional communities, government and private-sector stakeholders throughout the process.
DATE:
-
TEAM MEMBERS:
Luis CifuentesJorge VanegasGary JeffressRudolph RosenWesley Patrick
A national facility a three-system ground-based mobile radar fleet, the Doppler On Wheels (DOWs). The three systems include two mobile X-band Doppler on Wheels and the 6 to 12 beam "Rapid Scan DOW". These radar systems have participated in research projects that have covered a broad range of topics including individual cumulus cloud studies, orographic precipitation and dynamics, hydrologic studies, fire weather investigations, severe convective storms and tropical cyclones at landfall. DOWs can be frequently utilized on site for educational activities, such as being part of a university atmospheric instrumentation courses. The DOWs can be operated by students with minimal, often remote, technical supervision. The DOWs add significantly to the facility infrastructure of the atmospheric sciences community.
The overall goal of the current proposal is to adapt the interdisciplinary research-based curriculum created at the School for Science and Math at Vanderbilt (SSMV) for implementation of a four-year program in three Metropolitan Nashville Public School (MNPS) high schools. The specific aims of the proposal are to adapt the on-campus (at Vanderbilt) model for implementation in three public high schools with different academic profiles (SSM Academies); to define the variables and features required to sustain the program and to replicate the model in any high school setting; and to define a strategy for disseminating the model to additional schools. Students entering 9th grade in a school in which an SSM Academy has been implemented will be encouraged to apply. Those who are accepted into the program will spend three hours every other day in two courses based on the adapted curriculum. As with the SSMV, rising seniors will have opportunities to enter Vanderbilt laboratories for summer research internships. Teachers from the high school will work with Center for Science Outreach scientists to adapt the SSMV curriculum for implementation. Ongoing, year-long teacher professional development will be conducted to ensure that the curriculum is dynamic and the teachers are well-prepared to engage and guide the students in the curriculum. The anticipated outcomes include enhanced student achievement as measured by GPA, and scores on ACT science reasoning and end of course tests; increased SSM student interest in careers in science; increased district-wide enrollment in SSM programs; increased graduation rates and postsecondary education enrollment by SSM students; development of unique curricular science units that can be adapted for a novel four-year interdisciplinary research- based curriculum; development of a sustainable model built on effective features of each SSM that can be exported to other high schools within and outside Nashville; enhanced community and family involvement in the SSM programs and school community in general; a strengthened partnership between Vanderbilt and MNPS that will serve as a national model of a successful university-K-12 collaboration to enhance science teaching and learning.
Through "Addressing the Science of Really Gross Things: Engaging Young Learners in Biomedical Science Through a Fulldome Planetarium Show and Supporting Curricula," Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill, in close collaboration with NIH-funded researchers at the UNC and a leading children's book author, will develop an informal science education media project and a suite of hands-on, inquiry-based curricula based on the media project for use in science centers, museums and schools. This project will build the pipeline of future researchers and create awareness of NIH-funded research by generating interest and excitement among children age 9-13 in the health sciences and related careers and building their science content knowledge. To achieve the objective, the investigators will develop a fulldome planetarium show; create correlating curricula for summer camps, afterschool programs, scout programs, science center field trips, science clubs and schools; and produce a DVD highlighting careers in the health sciences. In addition, the project will use several methods to target populations traditionally underrepresented in the biomedical fields, including featuring professionals from underrepresented populations in the multimedia and curricula products, making outreach visits to counties with large populations traditionally underrepresented in health science research careers, and producing a Spanish-language version of the products. The use of a known brand, "Grossology," is an innovative way to connect to children in the target age range and to encourage the informal science education community to embrace health-science content in their fulldome theaters. In addition, the project's hub-and-spoke approach further encourages adoption of this programming by providing informal science venues with both an engaging experience (hub) and the supporting curricula (the spokes) that is necessary to extend the show's potential for having significant educational impact. A strong project team maximizes the project's likelihood for success. The team includes fulldome producers and educators from Morehead and NIH-funded researchers with expertise in appropriate science content areas. In addition, the investigators have created a network of consultants, advisory board members and evaluators that will create feedback loops designed to ensure high-quality, scientifically-accurate, educationally-effective products. The investigators will use a combination of free and revenue-based dissemination strategies to ensure that the products of this award are broadly distributed. These strategies hold significant promise for creating broad use of this project's products in the nation's science centers, museums and classrooms.