From 2011 to 2013 Pacific Science Center created content for and regularly updated The Studio, a portal to current medical research within the Science Center’s new human health exhibit, Professor Wellbody’s Academy of Health and Wellness. The Studio is a 500 ft2 hybrid exhibit/program space that combines artifacts, hands-on exhibits, media, and a programming area where local researchers communicate their work to visitors. The Studio was designed to be extremely flexible and it's modularity enables the project team to install a new current research exhibit every six months. The aim of the IMLS
Science centers are seen as places for communication of science very focused on the mise en scène of the content and methodologies of natural sciences. However, in the recent history, these institutions are transforming their role within education and transformation processes in the society they are engaged with. This communication presents a social project in Medellín, Colombia, that involves a vulnerable community, the local authorities of the city, academic institutions and NGO’s and a science center that is neighbor to this community.
Socially inclusive science communication has to take place where people spend most of their time — within their communities. The concept of knowledge rooms uses empty shops in socially disadvantaged urban areas for offering low-threshold, interactive science center activities. The commentary carves out essential features that contributed to the success of the pilot project. Most importantly, the knowledge rooms had to be welcoming and comfortable for visitors of various backgrounds. The spaces were easy to access, the initiators were seen as trustworthy actors by temporarily becoming part of
Science communication is an increasingly important field of activity, research and policy. It should not be assumed however, that science communication practices provide equitable and empowering opportunities for everyone. Social exclusion, inclusion and equity are key challenges for practitioners, researchers, policy makers and funders involved with science communication. In this commentary I reflect on the limitations of the ‘barriers approach to understanding social inclusion and exclusion from science communication and argue instead that a more complex perspective is needed. I conclude
As science museums and centres (SMC) broaden their practices to include the development of scientific citizenship, evaluation needs also to take account of this dimension of their practices. It requires complex methods to understand better the impacts of public participation in activities mediated by SMC, including their impacts on the governance of the SMC themselves.
The great increase in visitor studies on science museums and centres (SMC) has been marked also by a shift in approach to these studies, paying more attention to the social context of the visits and the nature of the experience. Evaluations have influenced directly SMC exhibition practices but more attention needs to be paid in research about the personal experiences of visits, how these are interpreted and how they contribute to scientific literacy.
An evaluation toolkit developed as part of the EU-funded PLACES project was applied in 26 case studies across Europe. Results show, among other things, the contribution of science communication initiatives to public curiosity, professional networking and perception of cities where these initiatives are stronger.
This is an efficacy study through which the Denver Museum of Nature and Science, the Denver Zoo, the Denver Botanic Gardens, and three of Denver's urban school districts join efforts to determine if partnerships among formal and informal organizations demonstrate an appropriate infrastructure for improving science literacy among urban middle school science students. The Metropolitan Denver Urban Advantage (UA Denver) program is used for this purpose. This program consists of three design elements: (a) student-driven investigations, (b) STEM-related content, and (c) alignment of schools and informal science education institutions; and six major components: (a) professional development for teachers, (b) classroom materials and resources, (c) access to science-rich organizations, (d) outreach to families, (e) capacity building and sustainability, and (e) program assessment and student learning. Three research questions guide the study: (1) How does the participation in the program affect students' science knowledge, skills, and attitudes toward science relative to comparison groups of students? (2) How does the participation in the program affect teachers' science knowledge, skills, and abilities relative to comparison groups of teachers? and (3) How do families' participation in the program affect their engagement in and support for their children's science learning and aspirations relative to comparison families?
The study's guiding hypothesis is that the UA Denver program should improve science literacy in urban middle school students measured by (a) students' increased understanding of science, as reflected in their science investigations or "exit projects"; (b) teachers' increased understanding of science and their ability to support students in their exit projects, as documented by classroom observations, observations of professional development activities, and surveys; and (c) school groups' and families' increased visits to participating science-based institutions, through surveys. The study employs an experimental research design. Schools are randomly assigned to either intervention or comparison groups and classrooms will be the units of analysis. Power analysis recommended a sample of 18 intervention and 18 comparison middle schools, with approximately 72 seventh grade science teachers, over 5,000 students, and 12,000 individual parents in order to detect differences among intervention and comparison groups. To answer the three research questions, data gathering strategies include: (a) students' standardized test scores from the Colorado Student Assessment Program, (b) students' pre-post science learning assessment using the Northwest Evaluation Association's Measures for Academic Progress (science), (c) students' pre-post science aspirations and goals using the Modified Attitude Toward Science Inventory, (d) teachers' fidelity of implementation using the Teaching Science as Inquiry instrument, and (e) classroom interactions using the Science Teacher Inquiry Rubric, and the Reformed Teaching Observation protocol. To interpret the main three levels of data (students, nested in teachers, nested within schools), hierarchical linear modeling (HLM), including HLM6 application, are utilized. An advisory board, including experts in research methodologies, science, informal science education, assessment, and measurement oversees the progress of the study and provides guidance to the research team. An external evaluator assesses both formative and summative aspects of the evaluation component of the scope of work.
The key outcome of the study is a research-informed and field-tested intervention implemented under specific conditions for enhancing middle school science learning and teaching, and supported by partnerships between formal and informal organizations.
Through this review of research on public engagement with science, Feinstein, Allen, and Jenkins advocate supporting students as “competent outsiders”—untrained in formal sciences, yet using science in ways relevant to their lives. Both formal and informal settings can be well suited for work in which students translate scientific content and practices into meaningful actions.
Great Lakes Science Center (GLSC), home of the NASA Glenn Visitor Center, is dedicated to sharing NASA content to inform, engage, and inspire students, educators, and the public. To further this goal, GLSC will develop a digital experience focused on collaboration and teamwork, emphasizing the benefits of a systems approach to STEM challenges. At the recently, fully renovated NASA Glenn Visitor Center, GLSC visitors will embark on an exciting mission of discovery, working in teams to collect real data from NASA objects and experiences. Mobile devices will become scientific tools as students, teachers, and families take measurements, access interviews with NASA scientists, analyze results from Glenn Research Center (GRC) test facilities, and link to NASA resources to assemble mission-critical information. This initiative will provide experiences that demonstrate how knowledge and practice can be intertwined, a concept at the core of the Next Generation Science Standards. GLSC’s digital missions will engage students and families in STEM topics through the excitement of space exploration. In addition, this project has the potential to inform the design of future networked visitor experiences in science centers, museums and other visitor attractions.
This is a handout from the session "Sustaining Current Science Experiences in Science Centers" at the 2014 ASTC Conference held in Raleigh, NC. It contains an overview of the session, which included discussion of embedded partnerships, episodic real science activities, and sustainability strategies.
This project by teams at the University of Alaska and the Oregon Museum of Science and Industry will engage the public in the topic of the nature and prevalence of permafrost, its scale on the earth and the important role it plays in the global climate. It builds on 50 years of informal education and outreach at the Alaskan Permafrost Tunnel near Fairbanks, AK, which, since the 1960s, has been the Nation's only underground facility for research related to permafrost and climate. The project has four components: (1) a nationally distributed 2,000 square-foot traveling exhibition; (2) exhibit and program enhancements to the learning opportunities at the tunnel; (3) programs, table-top exhibits and oral history research in 27 Native Alaskan villages; and (4) an education research study. Each of these components will be evaluated over the course of the work. By upgrading the displays at the tunnel, and by taking traveling programs to the villages, the work will extend the tunnel experience across Alaska. In the villages the team will collect stories about climate change, along with samples of real ancient ice and permafrost. These stories and materials will be used in the traveling exhibit which is expected to be at three museums per year for eight years. The research component of the initiative will build on the observation to date that the tunnel has provided thousands of visitors with an underground immersive environment where they learn about the science research being conducted and engage with climate-sensitive materials (e.g., permafrost, wedge ice, frozen silt, Pleistocene bones) using all of their senses. It has been conjectured that their learning experiences are enhanced by interacting with real vs. replicated objects. As museums often contain exhibits that are more likely to contain replicated and/or virtual objects and environments, understanding the impact that these different categories of objects have on learning is important. Using both types of materials, the project will investigate differences in their efficacy in informal science learning institutions related to climate change. Real objects are postulated to have the following attributes that stimulate fuller engagement; they are (1) information-rich by virtue of such features as their texture, odor, and dimensionality; (2) at real-life scale; (3) authentic, i.e., original objects; and (4) often unique, i.e., have inherent value. Research questions will explore the potential impacts on learning of these and related features. Methods employed will be observation, video, and interviews of the public with a particular focus on visitor talk with respect to explanations and elaborations about permafrost, tipping points, climate change, and geological time.