Skip to main content

Community Repository Search Results

resource project Public Programs
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase student motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by designing, implementing, and testing an afterschool internship program that will engage older youth in work-based learning experiences in in STEM fields. The new model program will link the resources and learning approaches of the Global Learning and Observations to Benefit the Environment (GLOBE) program to career academies where youth from populations underrepresented in STEM fields will gain direct experiences in data collection and analysis through student-led investigations in the geosciences and environmental studies. Two key outcomes of this project will be: (a) Development of a replicable model of an afterschool STEM internship program for informal STEM learning environments and schools across the nation, and (b) Development of a set of measurement tools and approaches that can assess and promote understanding regarding how youth think and feel about science and their possible future roles in science careers. Participating youth will master scientific practices and become immersed in science culture through opportunities to develop research projects, interact with scientists, and collaborate with fellow student-researchers. In the process, they will develop collaboration and communication skills, and gain an increased sense of identity and agency in science fields. They will also learn new strategies to attain their career goals.

In developing and testing the new model of an afterschool program focusing on STEM careers, the project will draw on both existing and emerging knowledge from three areas of inquiry: informal STEM learning, youth development, and work-based learning. The project will bring together theory related to work-based learning and apprenticeship to knowledge about informal STEM learning and youth development, addressing the needs of older youth as they transition to adulthood. The program will also explore the use of measurement tools that address workforce-related student learning goals in addition to social-emotional learning and STEM learning goals, adapting existing tools and developing new tools as needed. The result will be a replicable model for an afterschool, career-focused internship that facilitates STEM learning and identity, employing youth development principles, such as experiential learning, peer collaboration, adult mentoring, and meaningful contributions to the world beyond school. The project will use a mixed-methods approach to investigate four research questions: (1) What aspects of the program are most important for promoting the development of scientific practices, socio-emotional learning, and career skills? (2) How can afterschool informal science learning be designed to address the perceptions and needs of diverse groups, especially those from populations underrepresented in STEM? (3) How do youth make gains in developing facility with STEM practices, key social-emotional outcomes needed in work and civic life, and career development knowledge? And (4) How do we accurately measure development of scientific practices, socio-emotional learning and career skills? The project will develop pretest and posttest self-report measures to gauge program influence on social-emotional outcomes and career-related outcomes, and performance-based assessments and rubrics will be used to assess culminating science projects. Other factors contributing to the success of the new model will be examined through analysis of coach instructional logs, surveys, and questions, as well as participant observations, interviews, and focus groups. Project participants will be youth of ages 14-18 recruited from ten inner-city schools having large populations of students from groups underrepresented in STEM fields. Participants will meet in teams of approximately 14 interns for a total of 2.5 hours per week for 32 weeks. Each team will also meet an additional 4-6 times for weekend or overnight outings associated with their study sites.
DATE: -
TEAM MEMBERS: Manuel Alonso Cathy Ringstaff Svetlana Darche
resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource research Public Programs
Out-of-school settings promise to broaden participation in science to groups that are often left out of school-based opportunities. Increasing such involvement is premised on the notion that science is intricately tied to “the social, material, and personal well-being” of individuals, groups, and nations—indicators and aspirations that are deeply linked with understandings of equity, justice, and democracy. In this essay, the authors argue that dehistoricized and depoliticized meanings of equity, and the accompanying assumptions and goals of equity-oriented research and practice, threaten to
DATE:
TEAM MEMBERS: Thomas M. Philip Flávio S. Azevedo
resource project Websites, Mobile Apps, and Online Media
The ACCEYSS (Association of Collaborative Communities Equipping Youth for STEM Success) Network and Model project, an NSF INCLUDES Design and Development Launch Pilot, at Texas State University is forming a university-community partnership between interdisciplinary researchers (ACCEYSS research team), faith leaders and other community partners to implement an innovative model that prepares underrepresented and underserved youth to pursue undergraduate science, technology, engineering, and mathematics (STEM) degrees. The inaugural ACCEYSS network will include Texas State University, San Marcos Consolidated Independent School District, San Marcos Youth Service Bureau, City of San Marcos-Office of the City Manager, Hays County Youth Initiative, the Calaboose African American History Museum, and several local faith-based organizations. Many historic advancements have been made through the efforts and activities of faith and community leaders uniquely poised to motivate and galvanize community-based action. A collaboration among these academic institutions, social/cultural organizations, and faith partners to work with the families and youth of underrepresented/underserved populations will be an essential asset for generating new perspectives and ideas for improving STEM academic and career outcomes related to broadening participation in the scientific enterprise.

During this launch pilot, the ACCEYSS research team and network will collaborate to design and develop the ACCEYSS model as a culturally-relevant, blended-learning strategy that integrates online and in-person STEM enrichment activities (e.g., summer institute, afterschool clubs) that are aligned with the Science and Engineering Practices and Disciplinary Core Ideas Dimensions of the K-12 Next Generation Science Education Standards. The collective impact framework will be used to build diverse capacity, leverage asset-based community development, and sustain mutually reinforcing non-exclusive policies and practices for STEM diversity and inclusion. Additionally, in this launch pilot, a multifaceted design-based research approach will be utilized to support middle and high school students' interest in and pursuit of STEM studies.
DATE: -
TEAM MEMBERS: Shetay Ashford Kristy Daniel (Halverson) Dana Garcia
resource project Public Programs
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.

The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Katie Spellman Elena Sparrow Christa Mulder Deb Jones
resource evaluation Afterschool Programs
The Society for Science and the Public’s Advocate Grant Program provides selected Advocates with funding, resources, and information. Advocates include classroom teachers, school and district administrators, university professors, and informal science educators in community-based programs. The role of the Advocate is to support three or more underserved middle or high school students in the process of advancing from conducting a scientific research or engineering design project to entering a scientific competition. Advocates receive a stipend of $3,000; opportunities to meet and interact with
DATE:
resource project Public Programs
This one-year Collaborative Planning project seeks to bring together an interdisciplinary planning team of informal and formal STEM educators, researchers, scientists, community, and policy experts to identify the elements, activities, and community relationships necessary to cultivate and sustain a thriving regional early childhood (ages 3-6) STEM ecosystem. Based in Southeast San Diego, planning and research will focus on understanding the needs and interests of young Latino dual language learners from low income homes, as well as identify regional assets (e.g., museums, afterschool programs, universities, schools) that could coalesce efforts to systematically increase access to developmentally appropriate informal STEM activities and resources, particularly those focused on engineering and computational thinking. This project has the potential to enhance the infrastructure of early STEM education by providing a model for the planning and development of early childhood focused coalitions around the topic of STEM learning and engagement. In addition, identifying how to bridge STEM learning experiences between home, pre-k learning environments, and formal school addresses a longstanding challenge of sustaining STEM skills as young children transition between environments. The planning process will use an iterative mixed-methods approach to develop both qualitative and quantitative and data. Specific planning strategies include the use of group facilitation techniques such as World Café, graphic recording, and live polling. Planning outcomes include: 1) a literature review on STEM ecosystems; 2) an Early Childhood STEM Community Asset Map of southeast San Diego; 3) a set of proposed design principles for identifying and creating early childhood STEM ecosystems in low income communities; and 4) a theory of action that could guide future design and research. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE: -
TEAM MEMBERS: Ida Rose Florez
resource research Public Programs
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX. One of the principal challenges of the partnership of scientists and high school students are the existent barriers of language between them (Kim & Fortner, 2007). In other words, since scientists are usefully deemed as characters with higher power, status, and knowledge, students may feel nervous or intimidated, especially when scientists speak jargons and complex language. The best educators have a magical way of engaging their audiences with compelling stories. Even the
DATE:
TEAM MEMBERS: Vania Ochoa Villalobos Pei-Ling Hsu
resource research Public Programs
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX. Purpose & Problem - According to some existing results identified in the literature, the partnership between high school students and scientist involves several challenges, such as time management, lack of equipment, communication barriers, organization, complexity of the scientific language and scientist availability. The purpose is to address these problems and identify effective ways that can enhance the partnership between the scientist and high school students during
DATE:
TEAM MEMBERS: Valeria Gonzalez Pei-Ling Hsu
resource research Public Programs
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX. This study introduces cogenerative dialogues as a pedagogical tool to enhance the communications between students and engineers in a university internship environment. High school student interns worked with engineers for 7 months and were invited to conduct cogenerative dialogues with engineers regularly and discuss any issues, concerns, positives happened in the internship in order to improve their learning experience.
DATE:
TEAM MEMBERS: Yamile Urquidi Pei-Ling Hsu
resource research Public Programs
This poster was presented at 2017 Campus Office of Undergraduate Research Initiatives (COURI) Symposium, El Paso, TX. It describes the Work With a Scientist (WWASP) program, in which scientists and high school students engage in co-generative dialogues.
DATE:
TEAM MEMBERS: Paola Gama Pei-Ling Hsu
resource evaluation Public Programs
This summative evaluation report focuses on the impact that the Working with a Scientist Program at the University of Texas at El Paso (UTEP) had on its student participants. Student participants were recruited from regional high schools that are categorized as Title I schools, due to the large population of low income students that they serve. The participants engaged in mentored research activities a UTEP every other Saturday during the spring semester and on weekdays during the summer. Their mentors were professional scientists from different STEM disciplines, such as Chemistry, Immunology
DATE:
TEAM MEMBERS: Guadalupe Corral Lizely Madrigal