Making assumptions is an important step in solving many real-world problems. This study investigated whether participants who could solve well-defined physics problems could also solve a real-world physics problem that involved the need to make assumptions. The participants, who all had at least a BA in physics, were videotaped “thinking aloud” while solving three well-defined and one real-world problem and then interviewed about the problem-solving process. All the problems dealt with the same scientific content. The recordings were analyzed to identify similarities and differences in the
This paper discusses conceptions of identity in relation to science education and presents material from a series of interviews and focus groups with graduate students in science and technology. Given difficulties in retention and levels of significant participation by minority students indicated by aggregate data, the issue of race, as it informs critical interactions at a majority research university, is explored in terms of its effects on identity formation. It is argued that we need to look at “real-time” science to see how subtle interactions affect minority graduate students. These
The article discusses how undergraduate science students became docents for "The Genomic Revolution" exhibit at the Fernbank Museum of Natural History in Atlanta, Georgia. According to the article, a docent is one who serves as a connection between the museum and the attendees and acts as an interpreter of the collection for the visitors. Undergraduate students were recruited from schools in the Atlanta, Georgia area including the Georgia Institute of Technology, Emory University, and Spellman College. The docent training program that would cover the genetic principles of the exhibit, the Peer
DATE:
TEAM MEMBERS:
Robert PyattTracie RosserKelly Powell
The increasing need for communicating science to the public suggests that future scientists and science educators should be educated in science outreach and trained to communicate with lay audiences. We present a recently developed novel graduate course, which trains students in outreach efforts aimed to increase the public's understanding of science and of the role of science in our daily lives. In this course, the students, with the help of expert faculty mentors, prepare lay-language presentations about science-related topics of their choice and take the presentations to adult venues in the
DATE:
TEAM MEMBERS:
Hannah AlexanderAnna WaldronSandra Abell
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
American Chemical Society President Bassam Z. Shakhashiri appointed and charged this Commission to undertake a wholesale review of graduate education in the chemical sciences over a yearlong period. This document is a compact rendition of the Commission's final report, emphasizing only main conclusions and recommendations. The Commission judges that the sate of graduate education in the chemical sciences is healthy in many respects, but has not kept pace with the significant changes in the world's economic, social, and political environment since the end of World War II, when the current
This paper examines the experiences reported by scientists and graduate students regarding the experiences that first engaged them in science. The interviews analyzed for this paper come from Project Crossover, a mixed‐methods study of the transition from graduate student to PhD scientist in the fields of chemistry and physics. This analysis involved review of 116 interviews collected from graduate students and scientists and focused on the timing, source, and nature of their earliest interest in science. The majority (65%) of participants reported that their interest in science began before
Funded by the National Science Foundation (NSF), the Center for High-rate Nanomanufacturing (CHN) brings together three universities with unique strengths in nanoscience and nanomanufacturing: the University of Massachusetts, Lowell (UML); Northeastern University, Boston (NEU); and the University of New Hampshire, Durham (UNH). The University of Massachusetts Donahue Institute (UMDI) is conducting the five-year evaluation of CHN's education and outreach activities. The evaluation uses multiple sources of evidence to analyze project processes and outcomes. Using quantitative and qualitative
DATE:
TEAM MEMBERS:
Center for High-rate NanomanufacturingCarol Lynn AlpertCarol Barry
resourceevaluationProfessional Development, Conferences, and Networks
Funded by the National Science Foundation (NSF), the Center for High-rate Nanomanufacturing (CHN) brings together three universities with unique strengths in nanoscience and nanomanufacturing: the University of Massachusetts, Lowell (UML); Northeastern University, Boston (NEU); and the University of New Hampshire, Durham (UNH). The University of Massachusetts Donahue Institute (UMDI) is conducting the five-year evaluation of CHN's education and outreach activities. The evaluation uses multiple sources of evidence to analyze project processes and outcomes. Using quantitative and qualitative
DATE:
TEAM MEMBERS:
Center for High-rate NanomanufacturingCarol Lynn AlpertCarol BarryUMass Donahue Institute Research and Evaluation Group
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. This research directly addresses the results of our prior NSF supported work that identified shared issues of indigenous people, natural resources and the decline of native language use among underserved populations in the Altai and Yellowstone systems. This project contributes significantly to our emerging understanding of science learning in informal settings. It addresses a unique conception of ecological learning in three dimensions; personal, community and cultural perspectives. Research and education objectives align with modern conceptualizations of informal science learning as proposed by the National Academies of Science (2009). The MSU-GASU collaboration provides a holistic view of science learning and will unite diverse intellectual resources and research efforts in unique ecological and social systems. Both the Yellowstone and Altai mountain systems are of global concern as part of worldwide natural and cultural resources impacted by pervasive development, recreation and tourism activities and climate change. The underlying theoretical foundation for learning proposed in this research project is the basis for effective approaches to enable isolated rural populations to contribute traditional knowledge and wisdom to contemporary issues related to world-wide ecological and cultural issues including global climate change. Aspects of sustainability practices that are embedded in the knowledge and social processes of both marginalized and dominant societies will be better understood and taken into consideration for future research and education activities. Research outcomes will contribute to more effective informal, place-based and experiential science learning to help empower communities and decision makers in meeting challenges of sustainability. Inevitably, we expect this work to extend our understanding of science learning related to critical natural and cultural resources and their management. An understanding of how, why and where learning takes place will help extend the US and international research and education agendas related to informal science learning, natural and cultural resource management and sustainability.
Non-technical part.
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project we will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. Three cohorts of five MSU students will travel to the Altai Republic for eight weeks in the summers of 2013, 2014 & 2015. MSU students will comprise a research team with GASU science, education and language faculty to conduct research in the city of Gorno-Altaisk, two medium size villages such as Onguday and two small villages such as Karakol. We expect to work with youth in each setting and interview a representative sample at each site. As a research team we expect to gain a better understanding of how indigenous youth use native Altai language in informal settings to learn about environment. We expect to compare sights within the study. As part of our larger research interests in ecological learning and native people, we will conduct a similar comparative study in the Yellowstone Ecosystem with Native American youth. The studies associated with this project will add to our understanding about the extent and nature of native language use to learn science in underserved populations in very sensitive and unique ecological and cultural settings.
DATE:
-
TEAM MEMBERS:
Michael BrodyClifford MontagneArthur BangertChristine StantonShane Doyle
This award continues funding of a Center to conduct research and education on the interactions of nanomaterials with living systems and with the abiotic environment. The goals of this Center are to develop a predictive understanding of biological and ecological toxicology for nanomaterials, and of their transport and transformation in the environment. This Center engages a highly interdisciplinary, multi-institutional team in an integrated research program to determine how the physical and chemical properties of nanomaterials determine their environmental impacts from the cellular scale to that of entire ecosystems. The research approach promises to be transformative to the science of ecotoxicology by combining high throughput screening assays with computational and physiological modeling to predict impacts at higher levels of biological organization. The Center will unite the fields of engineering, chemistry, physics, materials science, cell biology, ecology, toxicology, computer modeling, and risk assessment to establish the foundations of a new scientific discipline: environmental nanotoxicology. Research on nanomaterials and development of nanotechnology is expanding rapidly and producing discoveries that promise to benefit the nation?s economy, and improve our ability to live sustainably on earth. There is now a critical need to reduce uncertainty about the possible negative consequences of nanomaterials in the environment, while at the same time providing guidelines for their safe design to prevent environmental and toxicological hazards. This Center addresses this societal need by developing a scientific framework of risk prediction that is paradigm-shifting in its potential to keep pace with the commercial expansion of nanotechnology. Another impact of the Center will be development of human resources for the academic community, industry and government by training the next generation of nano-scale scientists, engineers, and regulators to anticipate and mitigate potential future environmental hazards of nanotechnology. Partnerships with other centers will act as powerful portals for the dissemination and integration of research findings to the scientific, educational, and industrial communities, both nationally and internationally. This Center will contribute to a network of nanotechnology centers that serve the national needs and expand representation and access to this research and knowledge network through programs directed at California colleges serving underrepresented groups. Outreach activities, including a journalist-scientist communication program, will serve to inform both experts and the public at large about the safety issues surrounding nanotechnology and how to safely produce, use, and dispose of nanomaterials.
DATE:
-
TEAM MEMBERS:
Andre NelYoram CohenHilary GodwinArturo KellerPatricia Holden
This Pathways project responds to the high level of public skepticism about climate change science despite strong scientific consensus. In 2010, two George Mason University / Yale University polls became headline news in mainstream media (such as the NY Times and NPR) when they reported that 50% or more of our broadcast meteorologists and TV news directors are skeptical about global climate science. A full 30% of TV broadcast meteorologists, who are largely untrained in disciplines other than meteorology and weather forecasting, denounce anthropogenic global warming (AGW) as a hoax or a scam. Such polls strongly suggest that the general public trusts media statements over scientific facts, despite position statements acknowledging dominantly human responsibility for global warming in the past 50 years from nearly every U.S. professional society dealing with Earth sciences. Climate literacy in citizens and policy makers is essential for advancing responsible public policy on energy legislation, carbon emission reductions, and other climate change issues, and TV broadcast meteorologists have great potential for enhancing that literacy.