Climate Change: NASA’s Eyes on the Arctic is a multi-disciplinary outreach program built around a partnership targeted at k-12 students, teachers and communities. Utilizing the strengths of three main educational outreach institutions in Alaska, the Challenger Learning Center of Alaska partnered with the University of Alaska Museum of the North, the Anchorage Museum and UAF researchers to build a strategic and long lasting partnership between STEM formal and informal education providers to promote STEM literacy and awareness of NASA’s mission. Specific Goals of the project include: 1) Engaging and inspiring the public through presentation of relevant, compelling stories of research and adventure in the Arctic; 2) strengthening the pipeline of k-12 students into STEM careers, particularly those from underserved groups; 3) increasing interest in science among children and their parents; 4) increasing awareness of NASA’s role in climate change research; and 5) strengthening connections between UAF researchers, rural Alaska, and Alaska’s informal science education institutions. Each institution chose communities with whom they had prior relationships and/or made logistical sense. Through discussions analyzing partner strengths, tasks were divided; the Challenger Center taking on the role of k-12 curriculum development, the Museum of the North creating animations with data pulled from UAF research, to be shown on both in-house and traveling spherical display systems and the Anchorage Museum creating table top displays for use in community science nights. Each developed element was used while visiting the identified communities both in the classroom environment and during the community science nights.
The Magnet Lab has a strong commitment to education. Through the Center for Integrating Research & Learning, the lab supports educational programming at all academic levels: K-12, technical, undergraduate, graduate and postdoctoral. Please explore the links listed to the left to find out more about the depth of our educational resources for the community, for teachers and for students as well as our unique research offerings. Our programs are designed to excite and educate students, teachers and the general public about science, technology and the world around them. All of our programs are developed in close collaboration with research scientists and educators. Housed at and partly funded by the MagLab, the Center is uniquely positioned to take advantage of the excellent resources, connections, world-class facilities and cutting-edge science the lab has to offer. We also receive generous support from the National Science Foundation and the State of Florida. The Center maintains a rigorous research agenda designed to investigate how Center programs and materials affect teachers and students. Our Mission Statement is to expand scientific literacy and to encourage interest in and the pursuit of scientific studies among educators and students of all ages through connections between the National High Magnetic Field Laboratory and the National Science Foundation, the community of Tallahassee, the State of Florida and the nation.
COASST is a citizen science project of the University of Washington in partnership with state, tribal and federal agencies, environmental organizations, and community groups. COASST believes citizens of coastal communities are essential scientific partners in monitoring marine ecosystem health. By collaborating with citizens, natural resource management agencies and environmental organizations, COASST works to translate long-term monitoring into effective marine conservation solutions.
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. This research directly addresses the results of our prior NSF supported work that identified shared issues of indigenous people, natural resources and the decline of native language use among underserved populations in the Altai and Yellowstone systems. This project contributes significantly to our emerging understanding of science learning in informal settings. It addresses a unique conception of ecological learning in three dimensions; personal, community and cultural perspectives. Research and education objectives align with modern conceptualizations of informal science learning as proposed by the National Academies of Science (2009). The MSU-GASU collaboration provides a holistic view of science learning and will unite diverse intellectual resources and research efforts in unique ecological and social systems. Both the Yellowstone and Altai mountain systems are of global concern as part of worldwide natural and cultural resources impacted by pervasive development, recreation and tourism activities and climate change. The underlying theoretical foundation for learning proposed in this research project is the basis for effective approaches to enable isolated rural populations to contribute traditional knowledge and wisdom to contemporary issues related to world-wide ecological and cultural issues including global climate change. Aspects of sustainability practices that are embedded in the knowledge and social processes of both marginalized and dominant societies will be better understood and taken into consideration for future research and education activities. Research outcomes will contribute to more effective informal, place-based and experiential science learning to help empower communities and decision makers in meeting challenges of sustainability. Inevitably, we expect this work to extend our understanding of science learning related to critical natural and cultural resources and their management. An understanding of how, why and where learning takes place will help extend the US and international research and education agendas related to informal science learning, natural and cultural resource management and sustainability.
Non-technical part.
This is a collaborative research project between Montana State University (MSU), Bozeman, USA and Gorno-Altaisk State University (GASU), Altai Republic, Russian Federation. In this NSF International Research Experiences for Students project MSU students will travel to the Altai Republic and work with faculty and students at Gorno-Altaisk University to conduct research related to native language use in learning ecological sciences in informal settings. Student researchers will conduct individual studies related to the project theme of science learning in ecological contexts. This project we will help students learn how to conduct educational research related to the ecological learning experiences of indigenous youth (ages12-16) and the use and influence of native language in learning about environment. Three cohorts of five MSU students will travel to the Altai Republic for eight weeks in the summers of 2013, 2014 & 2015. MSU students will comprise a research team with GASU science, education and language faculty to conduct research in the city of Gorno-Altaisk, two medium size villages such as Onguday and two small villages such as Karakol. We expect to work with youth in each setting and interview a representative sample at each site. As a research team we expect to gain a better understanding of how indigenous youth use native Altai language in informal settings to learn about environment. We expect to compare sights within the study. As part of our larger research interests in ecological learning and native people, we will conduct a similar comparative study in the Yellowstone Ecosystem with Native American youth. The studies associated with this project will add to our understanding about the extent and nature of native language use to learn science in underserved populations in very sensitive and unique ecological and cultural settings.
DATE:
-
TEAM MEMBERS:
Michael BrodyClifford MontagneArthur BangertChristine StantonShane Doyle
National Parks are full of interesting and unusual STEM features which often intrigue visitors whose questions are answered by park personnel. In addition to the natural features, there are often researchers in the parks gathering data and conducting experiments. Park personnel are not apprised of these studies yet are often questioned about them. This collaborative project's goals are to derive a mechanism to educate the park personnel so they can respond to the visitor's inquiries. Collaborators include the National Park Service (NPS), TERC, Winston-Salem State University, and the park personnel at Carlsbad Caverns National Park. The plan is to work through the park interpreters who are employees of NPS and often are the voice for explaining the park's natural features. For this project, the interpreters and researchers will collaborate on the explanations of the science and TERC will work with the interpreters on interacting or educating the public visitors on the research. This is a pilot study to determine how best to bridge the scientists and their research to the park visitors. Evaluation on all elements in this study will be done by Char Associates and the Institute for Mathematics and Science Education at New Mexico State University. The results of this study are to determine the issues in explaining the research to the park interpreters and thence to the park visitors. If successful, it is anticipated that a model will be developed in collaboration with the NPS for use in other National Parks.
This Pathways project from the Ocean Discovery Institute (ODI) seeks to develop and pilot a program model designed to fill an identified gap in citizen science research and practice literature: how to effectively engage and better understand how to foster participation among people from under-represented groups in citizen science research. The ODI model is designed around six principles: (1) leaders who are reflective of the community, (2) science that is locally relevant, (3) guided, as opposed to self-guided, experiences, (4) direct interactions with scientists, (5) progressively increasing responsibilities for participants who express interest, and (6) removing barriers to participation, such as transportation, language, family involvement and access to technology. The project addresses environmentally degraded, crime-ridden local canyons, a locally relevant STEM-related issue, and leverages the Southern California Coastal Water Research Project's (SCCWRP) regional citizen science effort focused on identifying the sources and pathways of trash through regional watersheds. The scientific research components of the project focus on four canyons in the area, employing sampling methods developed by SCCWRP. Youth who are part of other ODI programs and who have demonstrated leadership and interest in science, work with the project team to scaffold family and youth participation in project activities taking place during afterschool and weekend time. Based on continued participation in the project, community participants can become more involved in the project, starting as "new scientists" and moving through "returning scientists" to "expert scientists" roles. The project evaluation seeks to identify the role and importance of the components of the proposed model with respect to participation, retention, and learning by participants from groups under-represented in STEM. The dissemination products of this Pathways project include a white paper describing the model and lessons learned as well as presentations to community groups and education and citizen science practitioners. Based on insights from the iterative approach to the model during this Pathways study, a subsequent full-scale development project would seek to engage citizen science projects around the nation in adapting the model to increase participation of individuals from groups underrepresented in STEM, including building out ODI's citizen science programming.
DATE:
-
TEAM MEMBERS:
Lindsay GoodwinRoxanne RuzicTheresa Sinicrope Talley
The University of Texas at El Paso will conduct a research project that implements and documents the impact of co-generative dialogues on youth learning and youth-scientist interactions as part of a STEM research program (i.e., Work with A Scientist Program). Co-generative dialogues seek to specifically assist with communication and understanding among collaborators. Over four years, 108 11th grade youth from a predominantly (90%) Hispanic high school will conduct STEM research with twelve scientists/engineers (e.g., chemist, civil engineer, geologist, biologist) and undergraduate/graduate students as part of 7 month-long after school program, including bi-weekly Saturday activities for 5 months followed by an intensive month-long, self-directed research project in the summer. Youth will be randomly assigned to experimental groups that include the co-generative dialogue treatment and control groups without the intervention. The scientists and their STEM undergraduate/graduate students will participate in both experimental and control groups, with different youth. Youth will receive high school credit to encourage participation and retention. The PI team hypothesizes that co-generative dialogues will result in improved learning, communication, and research experiences for both youth and scientists. Educational researchers will conduct co-generative dialogues, observations, interviews, and surveys using validated instruments to address the following research goals: (1) To investigate the impact of the treatment (co-generative dialogues) on youth knowledge, attitudes, perceptions of their experience, and their relationships with the scientists; (2) To investigate the impact of the treatment on scientists and graduate students; and (3) To identify critical components of the treatment that affect youth-scientist interactions. It is anticipated that, in addition to providing in-depth STEM research experiences for 108 youth from underrepresented groups at a critical time in their lives, the project will result in widely applicable understandings of how pedagogical approaches affect both youth learning and scientist experiences. The project also seeks to bridge learning environments: informal, formal, university and digital.
This research project will analyze and communicate important societal issues having to do with the disposal of nuclear waste. Unlike the vast majority of scholarly inquiries, which culminate in journal articles or a book, this inquiry will result in a feature length documentary about the scientific, political, and ethical issues adjacent to the problem of the socially responsible disposal of nuclear waste. Though the reach of the film will extend beyond any particular site, the focal point of the study is the only fully-licensed, operating geological repository for nuclear waste in the world: the Waste Isolation Pilot Plant twenty-six miles east of Carlsbad, New Mexico. The project will track the contentious history of current and planned clean-up operations involving the Pilot Plant. It will depict a disputed, sometimes successful and sometimes failed, trading zone for very different (often antagonistic) stakeholders from experts, to townspeople, politicians, miners, activists, industrial engineers, and futurists. Trading-zone studies, a methodological approach within the research area known as Science and Technology Studies (STS), interrogate subcultures confronting one another and developing coordinated local action where global agreement is often absent. In this trading-zone study, the investigator is ethically, visually, and methodologically committed to depicting that collision as all sides struggle to shape an contested nuclear future. The use of film as a medium for presenting the results of the trading-zone study is innovative and potentially transformative; it could open a way for STS to investigate in a visual way the making of science and technology policy. This project will reach a broad audience by partnering with outreach organizations, Film Sprout and Working Films, to bring the film to its core audience: policy makers, environmentalists, along with groups and citizens traditionally not positioned to participate in science policy. Target locales and groups include science museums such as the Bradbury Science Museum (Los Alamos), the Atomic Testing Museum (Las Vegas), The Museum of Science and Industry (Albuquerque), nuclear facilities, towns surrounding them, and environmental groups.
Geosciences Careers for Kids and Parents is a Track 1 program by Jim Metzner Productions (JMP) that uses its current communication platforms - the Pulse of the Planet (PoP) radio programs and website and the Kids Science Challenge website - to involve upper elementary children and their parents/caregivers and other adults in learning about geosciences research and careers. JMP's award-winning PoP radio program, which reaches 1,000,000+ listeners weekly, profiles geoscientists and encourages parents to involve their children in the geosciences. The PoP companion pulseplanet.com website provides podcasts of past radio programs and additional resources for engaging learners in the geosciences. On JMP's Kidsciencechallenge.com website, children (8-13 years of age) will find "kid friendly" profiles and videos of geoscientists and their careers, rich resources and interactivity on the sciences and further career activities, presented as part of a project that has already actively engaged thousands of children in learning about and "doing" science. The Pulse of the Planet and Kids' Science Challenge websites receive an average of 9,600 page views daily. PBS television's The News Hour and the PBS education site will feature our video segments on geoscientists featured in PoP programs.
Project LIFTOFF works with local, regional, and national partners to engineer statewide systems for Informal Science Education that inspire: YOUTH to pursue STEM education and careers through increased opportunities for quality, hands-on STEM learning. AFTERSCHOOL STAFF to facilitate STEM learning experiences that contribute to the overall STEM education and aspirations of youth in their programs. PROGRAM ADMINISTRATORS to encourage and support staff in the integration of STEM enrichment into the daily programming. STATE LEADERS to sustain and expand afterschool learning opportunities so that all students have access to engaging STEM experiences outside of the regular school day. Project LIFTOFF is dedicated to the development of the following essential elements of statewide systems for informal science education:
Access to appropriate STEM Curriculum for youth of all ages, abilities, and socio-cultural backgrounds that meets the needs and interests of individual community programs
Systematic STEM Professional Development that matches individual skills in positive youth development with abilities to facilitate discovery and science learning
A diverse Cadres of Trainers who will deliver the professional development, technical assistance and curriculum dissemination in their local communities
Authentic Evaluation of informal science efforts that determine the impacts on youth aspirations and the capacity of youth programs to provide quality STEM experiences
Local STEM education leadership to identify the ways in which collaborative education efforts can advance the development of 21st Century Skills and the preparedness for STEM workforce and higher education
Partnerships in support of youth development and informal science education that convene local, regional, and statewide organizations and stakeholders
To advance national initiatives and states' sySTEM engineering efforts, LIFTOFF coordinates an annual convening, the Midwest Afterschool Science Academy, that brings together national informal science experts, system leaders and youth development professionals to elevate the levels of science after school. The 5th MASA will be in the spring of 2014 in Kansas City, MO
DATE:
TEAM MEMBERS:
Missouri AfterSchool NetworkJeff Buehler
The overarching purpose of the Climate Literacy Zoo Education Network is to develop and evaluate a new approach to climate change education that connects zoo visitors to polar animals currently endangered by climate change, leveraging the associative and affective pathways known to dominate decision-making. Utilizing a polar theme, the partnership brings together a strong multidisciplinary team that includes the Chicago Zoological Society of Brookfield, IL, leading a geographically distributed consortium of nine partners: Columbus Zoo & Aquarium, OH; Como Zoo & Conservatory, St. Paul, MN; Indianapolis Zoo, IN; Louisville Zoological Garden, KY; Oregon Zoo, Portland, OR; Pittsburgh Zoo & PPG Aquarium, PA; Roger Williams Park Zoo, Providence, RI; Toledo Zoological Gardens, OH, and the organization Polar Bears International. The partnership leadership includes the Learning Sciences Research Institute at the University of Illinois at Chicago, and the Earth System Science Center at Pennsylvania State University. The partnership is joined by experts in conservation psychology and an external advisory board. The primary stakeholders are the diverse 13 million annual visitors to the nine partner zoos. Additional stakeholders include zoo docents, interpreters and educators, as well as the partnership technical team in the fields of learning innovations, technological tools, research review and education practice. The core goals of the planning phase are to a) develop and extend the strong multidisciplinary partnership, b) conduct research needed to understand the preconceptions, attitudes, beliefs, and learning modes of zoo visitors regarding climate change; and c) identify and prototype innovative learning environments and tools. Internal and external evaluations will be conducted by Facet Innovations of Seattle, WA. Activities to achieve these goals include assessments and stakeholder workshops to inventory potential resources at zoos; surveys of zoo visitors to examine demographic, socioeconomic, and technology access parameters of zoo visitors and their existing opinions; and initial development and testing of participatory, experiential activities and technological tools to facilitate learning about the complex system principles underlying the climate system. The long-term vision centers on the development of a network of U.S. zoos, in partnership with climate change domain scientists, learning scientists, conservation psychologists, and other stakeholders, serving as a sustainable infrastructure to investigate strategies designed to foster changes in public attitudes, understandings, and behavior surrounding climate change.
Stroud Water Research Center (SWRC) will partner with Longwood Gardens (LG) to develop educational materials that help visitors understand the links between the hydrologic and carbon cycles. The goal is to demonstrate how landscape aesthetics can influence land-use decisions, and to offer carbon-neutral methods the public and others can employ to reduce the impact of storm runoff. The intended audience is primarily adults among the 800,000 annual visitors to the Gardens who are landowners as well as professionals such as engineers, regional planners, landscape architects, developers and municipal officials. This project will also communicate research to public audiences through SWRC and LG websites.
DATE:
-
TEAM MEMBERS:
Louis KaplanJ. Denis NewboldSusan GillAnthony Aufdenkampe