Wireless radio communications, such as Wi-Fi, transmit public and private data from one device to another, including cell phones, computers, medical equipment, satellites, space rockets, and air traffic control. Despite their critical role and prevalence, many people are unfamiliar with radio waves, how they are generated and interact with their surroundings, and why they are the basis of modern communication and navigation. This topic is not only increasingly relevant to the technological lives of today’s youth and public, it is critical to the National Science Foundation’s Industries of the Future activities, particularly in advancing wireless education and workforce development. In this project, STEM professionals from academia, industry and informal education will join forces to design, evaluate, and launch digital apps, a craft-based toolkit, activity guides, and mobile online professional learning, all of which will be easily accessed and flexibly adapted by informal educators to engage youth and the public about radio frequency communications. Experiences will include embodied activities, such as physically linking arms to create and explore longitudinal and transverse waves; mobile experiences, such as augmented reality explorations of Wi-Fi signals or collaborative signal jamming simulations; and technological exploration, such as sending and receiving encrypted messages.
BSCS Science Learning, Georgia Tech, and the Children’s Creativity Museum (CCM) with National Informal STEM Education Network (NISE Net) museum partners will create pedagogical activity designs, digital apps, and a mobile online professional learning platform. The project features a rigorous and multipronged research and development approach that builds on prior learning sciences studies to advance a learning design framework for nimble, mobile informal education, while incorporating the best aspects of hands-on learning. This project is testing two related hypotheses: 1) a mobile strategy can be effective for supporting just-in-time informal education of a highly technical, scientific topic, and 2) a mobile suite of resources, including professional learning, can be used to teach informal educators, youth, and the general public about radio frequency communications. Data sources include pre- and post- surveys, interviews, and focus groups with a wide array of educators and learners.
A front-end study will identify gaps in public understanding and perceptions specific to radio frequency communications, and serve as a baseline for components of the summative research. Iterative formative evaluation will incorporate participatory co-design processes with youth and informal educators. These processes will support materials that are age-appropriate and culturally responsive to not only youth, with an emphasis on Latinx youth, but also informal educators and the broader public. Summative evaluation will examine the impact of the mobile suite of resources on informal educators’ learning, facilitation confidence and intentions to continue to incorporate the project resources into their practice. The preparation of educators in supporting public understanding of highly technological STEM topics can be an effective way for supporting just-in-time public engagement and interests in related careers. Data from youth and museum visitors will examine changes to interest, science self-efficacy, content knowledge, and STEM-related career interest. If successful, this design approach may influence how mobile resources are designed and organized effectively to impact future informal education on similarly important technology-rich topics. All materials will be released under Creative Commons licenses allowing for widespread sharing and remixing; research and design findings will be published in academic, industry, and practitioner journals.
This project is co-funded by two NSF programs: The Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Tino NyaweloJohn MatthewsJordan GertonSarah Braden
resourceprojectProfessional Development, Conferences, and Networks
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE:
-
TEAM MEMBERS:
Robert WesterveltCarol Lynn AlpertRay AshooriTina Brower-Thomas
resourceresearchProfessional Development, Conferences, and Networks
On behalf of the Interagency Working Group on Workforce, Industry and Infrastructure, under the NSTC Subcommittee on Quantum Information Science (QIS), the National Science Foundation invited 25 researchers and educators to come together to deliberate on defining a core set of key concepts for future QIS learners that could provide a starting point for further curricular and educator development activities. The deliberative group included university and industry researchers, secondary school and college educators, and representatives from educational and professional organizations.
The
The goal of this project is to promote informal STEM education in polar research through a novel interactive learning display that uses virtual and augmented reality technology. A new display system will be developed that combines the successful techniques of touch-enabled tabletop displays with new low-cost, head-mounted display technology to deliver an immersive 3D learning experience for the IceCube Neutrino Detection system located at the South Pole. The system will provide new means for engaging the public in learning about the IceCube Neutrino Dectection system and the challenges of Antarctic research.
The proposal relies on collaboration between three groups on the University of Wisconsin- Madison campus, including the Living Environments Laboratory (LEL), the Wisconsin IceCube Particle Astrophysics Center (WIPAC), and the Games Learning Society (GLS). Once developed, the display system will be installed at the Wisconsin Institutes for Discovery Town Center, a public space that attracts close to 50,000 people per year. This proposal was submitted as an Exploratory Pathways proposal, meaning that it represents a chance to establish the basis for future research, design, and development of innovations or approaches. Outcomes from this project will inform the PIs of how best to extend the system to add more 3D environments for other research locations in Antarctica. The system will be implemented in an extensible fashion so that a user can select from one of several Antarctic research station locations, not just IceCube, from the main menu of the system and suddenly be immersed in a 3D world that seeks to teach users about polar research at that location. Contents of the interactive learning display will be translated into Spanish, and users will be able to choose which language they want to use. Evaluations of the system will also inform designers about how these museum-type systems impact learning outcomes for the general public.
This project was submitted to the Advancing Informal STEM Learning (AISL) program, but will be funded by the Division of Polar Programs. AISL seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This INSPIRE award is partially funded by the Cyber-Human Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer Science and Engineering, the Gravitational Physics Program in the Division of Physics in the Directorate for Mathematical and Physical Sciences, and the Office of Integrative Activities.
This innovative project will develop a citizen science system to support the Advanced Laser Interferometer Gravitational wave Observatory (aLIGO), the most complicated experiment ever undertaken in gravitational physics. Before the end of this decade it will open up the window of gravitational wave observations on the Universe. However, the high detector sensitivity needed for astrophysical discoveries makes aLIGO very susceptible to noncosmic artifacts and noise that must be identified and separated from cosmic signals. Teaching computers to identify and morphologically classify these artifacts in detector data is exceedingly difficult. Human eyesight is a proven tool for classification, but the aLIGO data streams from approximately 30,000 sensors and monitors easily overwhelm a single human. This research will address these problems by coupling human classification with a machine learning model that learns from the citizen scientists and also guides how information is provided to participants. A novel feature of this system will be its reliance on volunteers to discover new glitch classes, not just use existing ones. The project includes research on the human-centered computing aspects of this sociocomputational system, and thus can inspire future citizen science projects that do not merely exploit the labor of volunteers but engage them as partners in scientific discovery. Therefore, the project will have substantial educational benefits for the volunteers, who will gain a good understanding on how science works, and will be a part of the excitement of opening up a new window on the universe.
This is an innovative, interdisciplinary collaboration between the existing LIGO, at the time it is being technically enhanced, and Zooniverse, which has fielded a workable crowdsourcing model, currently involving over a million people on 30 projects. The work will help aLIGO to quickly identify noise and artifacts in the science data stream, separating out legitimate astrophysical events, and allowing those events to be distributed to other observatories for more detailed source identification and study. This project will also build and evaluate an interface between machine learning and human learning that will itself be an advance on current methods. It can be depicted as a loop: (1) By sifting through enormous amounts of aLIGO data, the citizen scientists will produce a robust "gold standard" glitch dataset that can be used to seed and train machine learning algorithms that will aid in the identification task. (2) The machine learning protocols that select and classify glitch events will be developed to maximize the potential of the citizen scientists by organizing and passing the data to them in more effective ways. The project will experiment with the task design and workflow organization (leveraging previous Zooniverse experience) to build a system that takes advantage of the distinctive strengths of the machines (ability to process large amounts of data systematically) and the humans (ability to identify patterns and spot discrepancies), and then using the model to enable high quality aLIGO detector characterization and gravitational wave searches
DATE:
-
TEAM MEMBERS:
Vassiliki KalogeraAggelos KatsaggelosKevin CrowstonLaura TrouilleJoshua SmithShane LarsonLaura Whyte
This study examines the relative efficacy of citizen science recruitment messages appealing to four motivations that were derived from previous research on motives for participation in citizen-science projects. We report on an experiment (N=36,513) that compared the response to email messages designed to appeal to these four motives for participation. We found that the messages appealing to the possibility of contributing to science and learning about science attracted more attention than did one about helping scientists but that one about helping scientists generated more initial
DATE:
TEAM MEMBERS:
Tae Kyoung LeeKevin CrowstonMahboobeh HarandiCarsten ØsterlundGrant Miller
This four-year research study will investigate families' joint media engagement (JME) and informal STEM learning while listening to the child-focused STEM podcast, Brains On! Prior research has shown that the setting where families most often listen to this podcast together is the family automobile as children are being driven to school, on road trips, or other activities. Brains On! is rooted in the mission-driven principle of public radio to educate and inspire. The target audience is children 5-12 years old and their parents or caregivers. Each episode ranges from 20-45 minutes in length and presents ideas from a variety of STEM disciplines such as physics, chemistry, biology and engineering featuring sound-rich explanations of concepts through fun skits, original songs and interviews with scientists. The episodes use a light-hearted, humorous approach to share oftentimes complex STEM information. To provide an interactive experience, hosts encourage the audience to participate with the show by sending in drawings, emailing photos of plants and animals, or posing questions to be answered in future episodes. Every episode is co-hosted by a different child who interviews top scientists about their work. The scientists are selected to be representative of the range of topics presented and are meant to serve as role models for the listeners and demonstrating a wide range of career options in the STEM field.
The research adds to the social learning theory of joint media engagement (JME) which has shown that interactions between people sharing a media experience can result in learning together. Recent work on Joint Media Engagement has focused on parent/child interactions with television/video in the home. But little is known about how families engage with children's STEM podcasts together and what learning interactions occur as a result. Even less is known about this engagement within an automobile setting. This research project will build new knowledge filling a gap in the informal STEM learning field. It will use a mixed-methods research design with three phases of research to answer these questions: 1) How does the Brains On! podcast mediate STEM-based joint media engagement and family learning in an automobile setting? 2) What does STEM based joint media engagement and family learning look and sound like in this setting? 3) How do "in-automobile" factors foster or impede STEM-based joint media engagement and family learning? Phase 1 is a listener experience video study of 30 families listening to the Brains On! episodes. Phase 2 is video-based case studies of the natural automobile-based listening behaviors of eight Phase 1 families. Phase 3 is an online survey of Brains On! listeners to understand how representative the findings from Phases 1 and 2 are to the larger Brains On! Research. Results will be shared widely with key audiences that can use the findings (media developers, ISE practitioners, ISE evaluators and researchers, and families). It will also make an important contribution to the Joint Media Engagement literature and the ISE field.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.
While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE:
-
TEAM MEMBERS:
Amy TuiningaAshwani VasishthPankaj Lai
Physical science and engineering remain the least diverse of all STEM fields---with regard to women, underrepresented minorities, and persons with disabilities---across all levels of STEM education and training. SCI-STEPS is an NSF INCLUDES Design and Development Launch Pilot that will address this persistent challenge by developing a complete end-to-end pipeline (or system of pathways) from the beginning of college to the PhD, and then into the workforce. Many isolated efforts to broaden participation have shown promise, but they have not produced big enough impact. SCI-STEPS represents a concerted set of coordinated interventions---consciously facilitated, systemically linked, and purposefully disseminated. SCI-STEPS represents a broad regional network among major research universities, Historically Black Colleges and Universities, comprehensive universities, community colleges, national labs, and major scientific organizations. The goal of the network is to ensure that underrepresented individuals in the physical sciences and engineering can get from their starting point in STEM higher education---freshmen at 2-year or 4-year college---through the higher education pathways leading to an appropriate terminal degree and employment in the STEM workforce.
Women, underrepresented minorities, and persons with disabilities collectively represent the majority of college-age individuals entering higher education with an expressed interest in physical science and engineering. A growing body of research indicates that academic and social integration may be even more influential than academic abilities for retention of students. Thus, interventions aimed at stemming the losses of these individuals must ultimately be aimed at changing the system---including unwelcoming institutional climates, racial/ethnic/gender stereotyping, a lack of mentors with whom to identify, and evaluation methods that emphasize conformity over individual capabilities---rather than changing the individual. The SCI-STEPS pilot focuses effort on institutional readiness for implementation of best practice interventions at four key junctures: (i) college freshman to sophomore; (ii) undergraduate to graduate; (iii) PhD to postdoc; and (iv) postdoc to workforce.The pilot will proceed in three steps: (1) a planning phase, (2) development of an initial end-to-end pathways model with four Juncture Transition teams, and (3) scale-up of the SCI-STEPS "network of networks" with all initial partners. By addressing these objectives through a collective impact framework and embedded research, this pilot will demonstrate how best-practice interventions at each pathway juncture can be dovetailed and scaled up across a broad range of institutional types and across a large but distinct geographical area. Addressing these objectives will thus also serve to advance Broadening Participation efforts at a national scale, by suggesting the forms of institutional partnerships and best-practices that may inform other alliances in other STEM disciplines and/or different regional areas.
DATE:
-
TEAM MEMBERS:
Keivan StassunNicole JosephKelly Holley-BockelmannWilliam RobinsonRoger Chalkley
resourceprojectProfessional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The subject of physics and all of its sub-disciplines are becoming more prevalent in the public press as the research results appear to be quite interesting and important. While the physics discipline has made a Nation-wide effort to acquaint the public with physics knowledge through informal education learning experiences for years, it has not been as successful as the community desires. Thus, this project is aimed to gather all of the informal and outreach physics education efforts that have been attempted in the hope of finding the best practices for learning physics concepts and practices. A compendium will be published to inform future opportunities on how to educate the public through informal and outreach mechanisms. This project is a collaboration between Michigan State University and the University of Colorado. The physics community has a long history of engaging audiences in informal education activities. Physics institutions that facilitate informal programs include university departments, national laboratories and centers, and professional societies and organizations. There is, however, no systemic understanding of how these programs are facilitated, nor an assessment of the collective impact that these programs have on participants. This project will address numerous research questions in the broad areas of Activity Detail, Structural Aspects, and Assessment. Further, their efforts will determine the "who, what, why, where and how" of informal physics offerings, focusing on their facilitation, impact on participants, and the academic and discipline-specific cultures from which these programs originate. The study has several definite research outcomes that will emerge from this methodology: 1) They will produce a survey of the informal efforts of university physics departments, national physics labs and national physics organizations, 2) They will develop a taxonomy of informal physics programs from which we can characterize the landscape of programs, and 3) by investigating both "successful" as well as "failed" or terminated programs, they will develop an understanding of the culture and resources needed to support outreach from these research findings. In addition, they will produce published works that can be utilized by informal practitioners and administrators in physics to examine current programs and guide the development of new programs. With regards to the research questions and framework, the overarching and driving question for this research project is: "What is the landscape of informal physics learning, specifically, of those programs in the United States facilitated by physicists and physics students at academic institutions, national labs and by national physics organizations?" This study will provide a robust understanding of the state of informal physics programs and outreach by physicists in the United States today. Findings will inform practitioners and administrators as to how best to support and design informal physics programming. The results will also have broad implications for other discipline-specific informal STEM programming. The primary data collection methods will be a nationwide survey and interviews with a large sample of informal practitioners from the physics community. Site visits will be conducted with a subset of these programs in order to observe programs in action and to glean insights from university participants, community partners, public, and K-12 audiences.