Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
Through Project BUILD, a STAR Library Network (STAR Net) program funded by the National Science Foundation, the American Society of Civil Engineers (ASCE) and the Space Science Institute’s National Center for Interactive Learning (NCIL) offered the virtual Dream, Build, Create program which consisted of (1) the award-winning documentary Dream Big: Engineering Our World and (2) five live-streamed panels of diverse engineers (Dream Teams) who shared their stories of what it means to be an engineer. The external evaluation, conducted by Education Development Center (EDC), aimed to examine how
DATE:
resource research Public Programs
This Masters project consists of two elements: 1) an integrated after-school program to improve student English language reading and academic outcomes for third graders' vocabulary development by incorporating music, artistic creativity and linguistics; 2) a pilot sample curriculum that demonstrates the approach for building student comprehension through musical theater and Science, Technology, Engineering, and Mathematics (STEM) content experiences. Called "Water Buddy", this is an after-school program uses singing, dancing, writing, and play to build reading and vocabulary skills. The goal
DATE:
TEAM MEMBERS: Cynthyny Lebo
resource research Public Programs
As professionals, we often assume that the engaging experiences visitors have in our exhibits and programs will lead to long-term learning. But how do we know this is happening, and, moreover, how do we design exhibits, programs and interactions to maximize visitors’ ability to learn from their experiences? At Chicago Children’s Museum a long- standing research collaboration with Northwestern University and Loyola, Chicago University has allowed us to examine how families’ conversational reflections during and after their in-museum experiences impact children’s ability to process and recall
DATE:
TEAM MEMBERS: Tsivia Cohen Kim Koin
resource evaluation Media and Technology
PLUM LANDING a digital media PBS Kids series that is designed to motivate six- to nine-year-old children to investigate the natural world. Content developers from WGBH Boston and researchers from the Education Development Center (EDC) used an iterative research and design process to create the Plum Landing Explore Outdoors Toolkit. The Toolkit includes digital media resources (animated stories, live-action videos, an online badging system, a digital game, and an app for families), hands-on science activities, and support materials for parents, caregivers, educators, and program directors to
DATE:
resource evaluation Media and Technology
PLUM LANDING a digital media PBS Kids series that is designed to motivate six- to nine-year-old children to investigate the natural world. Content developers from WGBH Boston and researchers from the Education Development Center (EDC) used an iterative research and design process to create the Plum Landing Explore Outdoors Toolkit. The Toolkit includes digital media resources (animated stories, live-action videos, an online badging system, a digital game, and an app for families), hands-on science activities, and support materials for parents, caregivers, educators, and program directors to
DATE:
resource project Public Programs
This project is a Smart and Connected Communities award. The community is part of Evanston, Illinois and is composed of the lead partners described below:


EvanSTEM which is a in-school/out of school time (OST) program to improve access and engagement for students in Evanston who have underperformed or been underrepresented in STEM.
McGaw YMCA which consists of 12,000 families serving 20,000 individuals and supporting technology and makerspace activities (MetaMedia) in a safe community atmosphere.
Office of Community Education Partnerships (OCEP) at Northwestern University which provides support for the university and community to collaborate on research, teaching, and service initiatives.


This partnership will develop a new approach to learning enagement through the STEAM (Science, Technology, Engineering, Arts, and Mathematics) interests of all young people in Evanston. This project is entitled Interests for All (I4All) and builds upon existing research results of the two Principal Investigators (PIs) and previous partnerships between the lead partners (EvanSTEM and MetaMedia had OCEP as a founding partner). I4All also brings together Evanston school districts, OST prividers, the city, and Evanston's Northwestern University as participants.

In particular the project builds on PI Pinkard's Cities of Learning project and co-PI Stevens' FUSE Studios project. Both of these projects have explicit goals to broaden participation in STEAM pursuits, a goal that is significantly advanced through I4All. In this project, I4All infrastructure will be evaluated using quantitative metrics that will tell the researchers whether and to what degree Evanston youth are finding and developing their STEAM interests and whether the I4All infrastructure supports a significantly more equitable distribution of opportunities to youth. The researchers will also conduct in depth qualitative case studies of youth interest development. These longitudinal studies will complement the quantitative metrics of participation and give measures that will be used in informing changes in I4All as part of the PIs Design Based Implementation Research approach. The artifacts produced in I4All include FUSE studio projects, software infrastructure to guide the students through OST and in-school activities and to provide to the students actionable information as to logistics for participation in I4All activities, and data that will be available to all stakeholders to evaluate the effectiveness of I4All. Additionally, this research has the potential to provide for scaling this model to different communities, leveraging the OST network in one community to begin to offer professional development more widely throughout the school districts and as an exemplar for other districts. These research results could also affect strategies and policies created by local school officials and community organizations regarding how to work together to create local learning environments to create an ecosystem where formal and informal learning spaces support and reinforce STEAM knowledge.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Nichole Pinkard Reed Stevens
resource research Public Programs
But many young people face signifcant economic, cultural, historical, and/or social obstacles that distance them from STEM as a meaningful or viable option— these range from under-resourced schools, race- and gender-based discrimination, to the dominant cultural norms of STEM professions or the historical uses of STEM to oppress or disadvantage socio-economically marginalized communities (Philip and Azevedo 2017). As a result, participation in STEM-organized hobby groups, academic programs, and professions remains low among many racial, ethnic, and gender groups (Dawson 2017). One solution to
DATE:
TEAM MEMBERS: Bronwyn Bevan Kylie Peppler Mark Rosin Lynn Scarff Lissa Soep Jen Wong
resource research Professional Development, Conferences, and Networks
With support from the National Science Foundation, the STEM Effect project was undertaken in partnership by staff from the Education Development Center, the National Girls Collaborative Project (NGCP) and the Intrepid Sea, Air & Space Museum. Through a variety of methods, the project convened representatives from cultural institutions (museums, science centers, zoos, botanical gardens and aquaria) from across the country which provide STEM programming aimed at increasing the participation of girls and women in science, technology, engineering and mathematics (STEM), along with researchers, and
DATE:
TEAM MEMBERS: Lynda Kennedy Babette Moeller Alicia Santiago Sheri Levinsky-Raskin Wendy Martin Karen Peterson Goodman Research Group
resource project Exhibitions
Implementation of a permanent exhibit and supporting programs exploring themes of labor, immigration, and the changing nature of work and community in New Bedford’s commercial fishing industry.

To produce "More Than a Job: Work and Community in New Bedford’s Commercial Fishing Industry," a permanent exhibit, digital exhibits, K-12 curriculum materials, and significant public programming exploring themes of labor and immigration, and the changing nature of work and community in New Bedford's commercial fishing industry.
DATE: -
TEAM MEMBERS: Laura Corinne Orleans
resource project Exhibitions
Museums and similar informal learning settings offer opportunities for children and families to learn together in an engaging way. Current exhibits rely mainly on parents, teachers, signage, and staff in science museums to provide support and guidance. Since it is not always feasible to have knowledgeable staff on hand and not all parents have the same knowledge and background, children receive varied support and people often miss the point of the learning experience or activity. This project will develop and research a new genre of Smart Science Exhibits that use artificial intelligence (AI) in an adaptive system to support children in learning science by doing science. The aim of the project is to incorporate AI adaptivity and personalization to maximize inquiry-based STEM learning and engagement in informal learning settings. This research builds on the project team's first Smart Science Exhibit (EarthShake), which uses AI vision to give interactive feedback to visitors based on their actions and guides them through scientific inquiry. In the project's preliminary work, the first smart exhibit demonstrated higher engagement and more learning gains than resulted from a traditional museum exhibit addressing the same scientific content. Smart exhibits can extend and enhance the limited support that staff and parents can provide. This project will develop and investigate adaptive approaches to mixing exploration and AI guidance, which will personalize feedback during constructive exploration. The project will build on learning science techniques and technology, proven in intelligent tutoring systems in formal settings, and apply this to different informal learning contexts. The goal is to provide just-in-time learning support, which will extend the time visitors spend with exhibits, thereby deepening inquiry-based science learning. The project is partnering with science museums and afterschool programs, which will enable thousands of children and families from a wide variety of backgrounds to use the project's smart exhibits each year. Smart Science Exhibits is funded by the Advancing Informal STEM Learning (AISL) program which supports innovative research, approaches, and resources as part of its overall strategy to enhance learning in informal environments.

Many informal learning settings are considering mixed-reality (MR) technologies to increase engagement and understanding of science. Using Smart Science Exhibits, the project will investigate how design choices in mixed-reality systems impact users' engagement and learning of STEM concepts. (Mixed reality is the blending of the physical world and the digital world, enabling interaction between human and artificial intelligence.) Project research will extend current research, which is largely descriptive, by investigating empirical results on learner outcomes. Key research questions are: What types of adaptivity and personalization can improve Smart Science Exhibits and MR systems generally? What balance of exploration and AI guidance is best to maximize enjoyment, engagement and learning? Do findings about the effective features of Smart Science Exhibits generalize to different content areas and informal learning settings? The project will employ user-centered design research, formative evaluation, and controlled experimentation to discover how mixed-reality systems should be designed to best meet visitor and staff needs in informal learning settings including multiple museums and afterschool providers. Data on learner behaviors in mixed-reality experiences in a variety of informal settings will inform the design of Smart Science Exhibits. The project will investigate whether adaptive approaches generalize across content and context to achieve better STEM learning, engagement, collaboration, and productive dialogue. The project will incorporate the team's prior technical research, which developed both vision techniques to track children's physical interactions and interactive pedagogical techniques to provide scaffolds for and reactive feedback on children's inquiry and construction behaviors. New technical research will develop AI techniques for adaptive task selection and personalized feedback that draws on a visitor's history of interaction. Project research and design resources will be widely shared with the science museum educators and designers through presentations at annual conferences and with researchers, developers and others through peer-reviewed journal publications and professional publications.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Nesra Yannier Scott Hudson Ken Koedinger
resource project Exhibitions
The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. An ongoing challenge to the design of effective STEM learning exhibits for diverse young children is the absence of reliable and evidence-based resources that designers can apply to the design of STEM exhibits that draw upon play as a child's primary pedagogy, while simultaneously engaging children with STEM content and processes that support development of STEM skills such as observation. To address these challenges, the project team will use a collaborative process in which learning researchers and informal STEM practitioners iteratively develop, design, and test the STEM for Play Framework that could then be applied to the design of STEM-focused exhibits that support play and STEM skill use among early learners.

This Research in Service to Practice project will address these questions: 1) What is a framework for play in early STEM learning that is inclusive of children's cultural influences?; 2) To what extent do interactions between early learners (ages 3-8) and caregivers or peers at exhibits influence the structure and effectiveness of play for supporting STEM skill development?; 3) How do practitioners link play to STEM skill development, and to what extent does a framework for play in early STEM learning assist in identifying types of play that supports early STEM skill development?; and 4) What do practitioners identify as best practices in exhibit design that support the development of STEM skills for early childhood audiences, and conversely, to what extent do practitioners perceive specific aspects of the design as influential to play? The project team will address these questions across four phases of study that will include (a) development of a critical research synthesis to inform the initial STEM for Play framework; (b) the use of surveys, focus groups, and interviews to solicit feedback from practitioners; (c) testing and revising the framework by conducting structured observations of STEM exhibits at multiple museums. The project team will use multiple analytic approaches including qualitative thematic analyses as well as inferential statistics. Results will be disseminated to children?s museums, science centers, and research communities.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
resource project Public Programs
A makerspace is a place where participants explore their own interests and learn by creating, tinkering, and inventing artifacts through the use of a rich variety of tools and materials. This project will develop and research a flexible model for makerspaces that can be adapted to local settings to support informal STEM learning for hospitalized, chronically ill patients in pediatric environments who are predominantly youth of color from low-income backgrounds. These youth are subject to health disparities and healthcare inequities. Their frequent absence from school and other activities disrupt friendship formations, reduce their opportunities for social support, reduce their access to environments where they can feel a sense of self-agency through learning and creative activities. Through patient centered co-design, this project will build adaptable STEM makerspace environments conducive to STEM-rich learning, the exercise of self-agency, and development of STEM identity. Project design will focus on the sensitive nature of working with vulnerable populations (i.e., immunocompromised patients). The project will develop and disseminate several resources: (1) a flexible makerspace model that can be adapted to work in different pediatric settings; (2) research methods for conducting research in highly sensitive environments with and alongside young patients; and (3) professional development resources and a playbook including guidebook and facilitators guide that will articulate principles and processes for designing, implementing and sustaining makerspaces in pediatric settings. These resources will be widely disseminated through maker and other informal STEM networks.

The project will pursue two innovations. First, the project will develop the physical design of adaptable informal STEM makerspaces in pediatric settings. Second, the project will develop innovative patient-centered methodologies for studying approaches to physical design and the effects of makerspace installations for informal STEM-learning, self-agency, and STEM identity development. Using a design-based research approach, the project will investigate: (1) the extent to which physical makerspace designs support access to material, relational, and ideational resources for STEM-learning and well-being; (2) the extent to which makerspace installations, researchers, and medical care staff support patients in accessing and generating tools and other resources for personal learning and a sense of agency; and (3) the extent to which makerspace design with a focus on affording material, relational, and ideational resources provide rich opportunities for young patients to explore their own interests and cultivate STEM identities. One of the project's innovations, beyond development of adaptable makerspace model involves developing an innovative patient-centered methodology for conducting educational research toward broadening participation in STEM in highly sensitive medical care environments. The project will employ a mixed-methods research design and collect a variety of data to address these areas of research including documentation of makerspace design plans and renderings, observational data gathered through fieldnotes, video and audio recordings, informal interviews with patients, their families, and child-care staff, and patient generated artifacts. Articles for researchers and practitioners will be submitted for publication to appropriate professional journals and peer-reviewed publications.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Gokul Krishnan Maria Olivares