Skip to main content

Community Repository Search Results

resource project Media and Technology
Bridging Earth and Mars (BEAM): Engineering Robots to Explore the Red Planet engages the general public and K-8 students in exhibits and programs designed to foster awareness of robotic technology, computer programming, and the challenges and opportunities inherent in NASA missions and S-STEM careers. The Saint Louis Science Center (SLSC) of St. Louis, Missouri is the lead institution and project site; partners include Washington University in St. Louis, Saint Louis University, the St. Louis regional FIRST Robotics organization, and the Challenger Learning Center-St. Louis. Project goals are to: 1) inform, engage, and inspire the public to appreciate NASA’s Mission by sharing findings and information about NASA’s missions to Mars; 2) ignite interest in S-STEM topics and careers for diverse K-8 students; and, 3) encourage students in grades 6-8 to sustain participation in educational experiences along the S-STEM careers pipeline. The SLSC will design and build a Martian surface and panorama where two rovers can be remotely controlled. Visitors in the McDonnell Planetarium will use controllers to program rover exploration of the Martian landscape in real-time. Visitors in SLSC’s Cyberville gallery, located one-quarter mile away across a highway-spanning enclosed bridge, will program the second rover with simulated time lag and view its movements via a two-way camera system. SLSC will organize and host a series of Innovation Workshops for K-8 students, each featuring teamwork-building engineering challenges from current and updated NASA-based science curricula. Participants will be recruited from SLSC community partners, which include community centers and faith-based programs for underserved families.
DATE: -
TEAM MEMBERS: Bert Vescolani John Lakey Paul Freiling
resource project Professional Development, Conferences, and Networks
Ascent to Orbit: An Educator Professional Development Program Investigating STEM Concepts for Space Shuttle Missions and Beyond trains upper elementary and middle school teachers to deliver inquiry-based, hands-on activities exploring STEM concepts involved in the evolution of human space exploration. The California Science Center Foundation will engage a total of 100 teachers from the Greater Los Angeles Area, 50 per year for two years. The curriculum will be organized around the Pre-Shuttle Era, Shuttle/International Space Station Era and Future of Human Spaceflight. This coursework will be developed in consultation with Dr. Ken Phillips, the California Science Center's Curator of Aerospace Science to be interdisciplinary and correlate with the newly adopted Next Generation Science Standards. As part of the 16-hour, two-day training session, teachers will view Space Shuttle Endeavour as well as other significant artifacts of human space exploration in the Science Center's singular Air and Space collection, including the Mercury-Redstone 2, Gemini 11 Capsule and Apollo-Soyuz Command Module. The goal is to engage teachers and their students with a core set of STEM concepts that stimulate critical thinking about science and engineering principles. As a result of the professional development, teachers will gain a deeper understanding of core STEM concepts, be motivated to embed STEM and space related concepts into their curriculum, and foster in students an interest in space travel that begins with a trip to see Space Shuttle Endeavour and journeys to the future of human space exploration.
DATE: -
TEAM MEMBERS: Jeffrey Rudolph Robin Gose Ken Phillips
resource project Media and Technology
The Mars Exploration Exhibit is a new public exhibition designed to provide experiential learning opportunities for students, educators and the public while inspiring greater excitement about space science. The exhibit emphasizes the importance of STEM education and careers through practical application and inquiry-based learning. Space Center Houston, the official visitor center of Johnson Space Center, is creating the new Mars landscape simulation in partnership with the Houston Independent School District and University of Houston Clear Lake. The exhibit will offer interactive science education activities that will be delivered through distance learning and onsite instruction at Space Center Houston. Utilizing research-based practices in both formal and informal learning environments, the project will help to attract and retain students in science, technology, engineering and mathematics. It will also foster life-long learning and enthusiasm toward the promise of space science and innovation. This unique exhibit will enable students and Space Center Houston’s more than 800,000 annual visitors to increase their knowledge of Earth science and apply their learning to the Mars environment. The exhibit will also highlight the role NASA missions serve in scientific innovation. The project will build the capacity of the Greater Houston community and school-based organizations to engage girls, minorities and other underrepresented students in STEM learning. It will offer in-depth science education for low-performing and gifted/talented students, ultimately bridging achievement gaps, increasing student performance and cultivating greater interest in science. Project outcomes will include: a 1,500-square-foot Mars landscape exhibition; interactive video presentations highlighting water recovery and other environmental processes; a standards-based learning curriculum aligned with Texas Essential Knowledge and Skills (TEKS ) and National Science Standards; and a menu of K-12 experiential learning activities focused on water, air, renewable energy and other critical science topics.
DATE: -
TEAM MEMBERS: Janet Brown Melanie Johnson Paul Spana Meg Naumann
resource project Public Programs
Since August of 2011, Project iLASER (Investigations with Light And Sustainable Energy Resources) has engaged children, youth and adults in public science education and hands-on activities across the entire length of the U.S.-Mexico border, from the Pacific Ocean to the Gulf of Mexico. The two main themes of Project iLASER activities focus on sustainable energy and materials science. More than 1,000 children have been engaged in the hands-on activities developed through Project iLASER at 20+ sites, primarily in after-school settings in Boys & Girls Clubs. Sites include Boys & Girls Clubs in California (Chula Vista, Imperial Beach, El Centro and Brawley); Arizona (Nogales); New Mexico (Las Cruces); and Texas (El Paso, Midland-Odessa, Edinburg and Corpus Christi). The project was co-funded between the NSF Division of Chemistry (CHE) and the Division of Research on Learning in Formal and Informal Settings (DRL).
DATE: -
TEAM MEMBERS: Southwestern College David Brown David Hecht
resource project Public Programs
This full-scale development project will address the need for creative models to support STEM learning in underserved rural communities that lack traditional infrastructure such as science centers. The project will create and study an innovative model of capacity-building: viz., small networks of community-embedded “STEM Guides” will be trained to identify a range of existing STEM resources available in their local regions, and to connect STEM-interested youth with them in creative and personal ways. Anticipated learning outcomes for youth and families include greater awareness of and interest in STEM experiences and pathways. At the regional level, the project will build capacity through increasing the STEM Guides’ knowledge of local STEM opportunities, and by enhancing connections among STEM-related resources, programs, and industries. The project will implement and study STEM Guide networks in a staggered series of five low-income, rural regions, providing startup resources and professional development. The project will increase the frequency and depth of out-of-school STEM experiences for approximately 3,000 youth aged 10-18 at a relatively low cost, creating a national model for STEM capacity-building in rural settings. It is led by the Maine Mathematics and Science Alliance, with 4-H, Cornerstones of Science (library-based STEM) and Maine’s university system as collaborators. EDC is the primary external evaluator.
DATE: -
TEAM MEMBERS: Jan Mokros Sue Allen
resource project Media and Technology
This full-scale project addresses the need for more youth, especially girls, to pursue an interest in engineering and eventually fill a critical workforce need. The project leverages museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities. The project includes the following bilingual deliverables: (1) Creative Solutions programming will engage girls in group oriented engineering activities at partner community-based organizations, where the activities highlight altruistic, personally relevant, and social aspects of engineering. Existing community groups will use the activities in their regular meeting structure. Visits to the museum exhibits, titled Design Your World will reinforce messages; (2) Design Your World Exhibits will serve as a community hub at two ISE institutions (Oregon Museum of Science and Industry and the Hatfield Marine Science Center). They will leverage existing NSF-funded Engineer It! (DRL-9803989) exhibits redesigned to attract, engage, and mobilize a more diverse population by showcasing altruistic, personally relevant, and social aspects of engineering; (3) Digital engagement through targeted use of social media will complement program and exhibit content and be an online portal for groups engaged in the project; (4) A community action group (CAG) will provide professional development opportunities to stakeholders interested in girls' STEM identity (e.g. parents, STEM-based business professionals) to promote effective engineering messaging throughout the community and engage them in supporting project participants; and (5) Longitudinal research will explore how girls construct and negotiate engineering-related identities through discourse across the project activities and over time.
DATE: -
resource project Media and Technology
The Global Soundscapes! Big Data, Big Screens, Open Ears Project uses the new science of soundscape ecology to design a variety of informal science learning experiences that engage participants through acoustic discovery Soundscape ecology is an interdisciplinary science that studies how humans relate to place through sound and how humans influence the environment through the alteration of natural sound composition. The project includes: (1) an interface to the NSF-funded Global Sustainable Soundscapes Network, which includes 12 universities around the world; (2) sound-based learning experiences targeting middle-school students (grades 5-8), visually impaired and urban students, and the general public; and (3) professional development for informal science educators. Project educational components include: the first interactive, sound-based digital theater experience; hands-on Your Ecosystem Listening Labs (YELLS), a 1-2 day program for school classes and out-of school groups; a soundscape database that will assist researchers in developing a soundscape Big Database; and iListen, a virtual online portal for learning and discovery about soundscape. The project team includes Purdue-based researchers involved in soundscape and other ecological research; Foxfire Interactive, an award-winning educational media company; science museum partners with digital theaters; the National Audubon Society and its national network of field stations; the Perkins School for the Blind; and Multimedia Research (as the external evaluator).
DATE: -
TEAM MEMBERS: Bryan Pijanowski Daniel Shepardson Barbara Flagg
resource project Public Programs
The project is designed to engage Hispanic students in grades K-5 in STEM in afterschool programs within community-based organizations (CBOs). The project builds on the foundation of an NSF-supported afterschool science program--APEX (Afterschool Program Exploring Science). In collaboration with National Council of La Raza (NCLR), and ASPIRA, the project adapts APEX into a bilingual English/Spanish format and, using a train the trainer model, disseminates it nationally, using a train the trainer model. Each of the ten local project sites will build on a partnership between a science museum and a CBO affiliate of NCLR or ASPIRA. The project is designed to: (1) Build the organizational capacity of partner science museums to work with CBOs and the Hispanic community. (2) Strengthen links between science museums and Hispanic serving CBOs in their communities. (3) Engage the expertise, involvement, and collaboration of national Hispanic-serving organizations, NCLR and ASPIRA, in STEM education. (4) Increase the engagement of Hispanic children and families in STEM. The project evaluation will investigate how effectively the project builds the organizational capacity of partner museums and CBOs in engaging Hispanic children and families in STEM; the types and strength of science museum/CBO partnerships; the effectiveness of the project in increasing Hispanic student and family engagement in STEM, and the types of contributions the project makes to the field of informal STEM learning. The evaluation will use qualitative and quantitative methods, including surveys, interviews, case studies, social network and collaboration analysis, observations, activity tracking, embedded assessment, photo elicitation, and focus groups.
DATE: -
resource project Public Programs
This initiative is a collaboration of the University of Massachusetts Amherst, the EcoTarium science museum in Worcester, MA, other scientists and teachers at Clark University in Massachusetts and at Loyola Marymount University in Los Angeles, along with six other museums in New England and California. The project seeks to develop and study a model that would integrate the science research on urban systems into science museum exhibits and programs, starting in this phase in a new "City Science" exhibit space at the EcoTarium. The goal is to learn how to assist citizens in decision-making and shaping a sustainable future for their communities. The work builds on the NSF/SBS-funded Urban Long-term Research Area Exploratory (ULTRA-Ex) network, one of a set of awards by NSF/SBS and NSF/BIO in the area of urban ecology. The exhibit (with four sections: neighborhood design; land use and land cover; urban biodiversity; urban heat island effect) will include activities related to "alternative futures" of cities, will be designed to be updated as new results from this research are produced and also to allow for visitors to respond to survey questions about their city environment that will be used by the researchers. Deliverables will also include an integration of the prototype exhibits with an NSF-funded K-12 urban ecology curriculum (co-PI from Loyola Marymount University), which has already been done with nature centers and would now expand into science museums. The significance of this work includes the growing importance of new research on human/ecology interaction in cities coupled with applications of this research to Public Participation in Science Research (PPSR) and local decisions and choices. It is driven by the future vision of the cities in which the target audience(s) is located. The work in Worcester will focus on reaching underserved audiences, which characterizes much of the city of Worcester, and will include partnerships with local schools and community groups.
DATE: -
TEAM MEMBERS: Robert Ryan Eric Strauss Colin Polsky Alexander Goldowsky Paige Warren Betsy Loring
resource project Public Programs
Techbridge has proposed a broad implementation project that will scale up a tested multi-faceted model that increases girls' interest in STEM careers. The objectives of this project are to increase girls' engineering, technology, and science skills and career interests; build STEM capacity and sustainability across communities; enhance STEM and career exploration for underrepresented girls and their families; and advance research on the scale-up, sustainability, and impact of the model with career exploration. The Techbridge approach is grounded in Eccles' expectancy value model, and helps bridge critical junctures as girls transition from elementary to middle school and middle school to high school, immersing participants in a network of peers and supportive adults. Techbridge targets girls in grades 5-12 with a model that includes five components: a previously tested and evaluated curriculum, career exploration, professional development for staff and teachers, family engagement, and dissemination. The inquiry-based curriculum introduces electrical engineering and computer science through engaging, hands-on units on Cars and Engines, Green Design, and Electrical Engineering. The Techbridge model will be enhanced to include a central repository for curriculum and support materials, electronic girl-driven career exploration resources, an online learning community and video tools for staff, and customized family guides. Project deliverables include the dissemination of the enhanced model to three cities, 24 school sites and teachers, 2,000 girls, and over 600 role models. A supplementary research component will study the broad implementation of the Techbridge model by examining the fidelity of implementation and the program's impact on girls' STEM engagement and learning. The research questions are as follows: (1) To what extent and how do new program sites demonstrate adherence to the Techbridge program model? (2) Do new sites experience similar or increased participant responsiveness to Techbridge programming with regard to scientific learning outcomes, career awareness, attitude and interest in engineering? (3)How are changes experienced by girls sustained over time, if at all? (4) To what extent and how do new sites balance instilling the Techbridge essentials, those critical components Techbridge identifies as essential for success, with the need for local adaptation and ownership of the program? and (5) Given the potential for customization in local communities, do new sites maintain programmatic quality of delivery experienced at the original site? If so, what are elements essential to success regarding quality delivery? The mixed-methods study will include document analysis, embedded assessments, participant survey scales, and observations. Qualitative data methods include interviews with teachers, role models, staff and focus groups with girls. A project evaluation will also be conducted which investigates project outcomes for participants (girls, teachers, role models, and families) and fidelity of the implementation and enhancements at expansion sites, using a quasi-experimental approach. Career and learning outcomes for girls will be determined using embedded assessments, portfolios, surveys, school data, and previously validated instruments such as the Career Interest Questionnaire and the Modified Attitudes towards Science Inventory. The Managing Complex Change model is used as a framework for the project evaluation for the purpose of examining factors related to the effectiveness of scaling. The dissemination of research and evaluation findings will be achieved through the use of publications, blogs, social media, and conferences. It is anticipated that this project will broaden the participation of Hispanic, African-American, and English language learner girls, build capacity for STEM programming and sustainability at the dissemination sites, and disseminate findings to over 1 million educators, researchers, and community members. Broader impacts include contributing to the field's understanding of how virtual role models and field trips can engage young women, increase corporate advocacy, and engage participants in research and dissemination efforts.
DATE: -
TEAM MEMBERS: Linda Kekelis
resource project Public Programs
The National Girls Collaborative Project (NGCP) seeks to maximize access to shared resources within projects and with public and private sector organizations and institutions interested in expanding girls’ participation in science, technology, engineering, and mathematics (STEM). Funded primarily by the National Science Foundation, the NGCP is a robust national network of more than 3,000 girl-serving STEM organizations. Currently, 31 Collaboratives, serving 40 states, facilitate collaboration between more than 12,800 organizations who serve more than 7.7 million girls and 4.4 million boys. The NGCP occupies a unique role in the STEM community because it facilitates collaboration with all stakeholders who benefit from increasing diversity and engagement of women in STEM. These stakeholders form Regional Collaboratives, who are connected to local girl-serving STEM programs. Regional Collaboratives are led by leadership teams and advisory boards with representatives from K-12 education, higher education, community-based organizations, professional organizations, and industry. NGCP strengthens the capacity of girl-serving STEM projects by facilitating collaboration among programs and organizations and by sharing promising practice research, program models, and products through webinars, collaboration training, and institutes. This is accomplished through a tested comprehensive program of change that uses collaboration to expand and strengthen STEM-related opportunities for girls and women. In each replication state, the NGCP model creates a network of professionals, researchers, and practitioners, facilitating collaboration within this network, and delivering high-quality research-based professional development. Participating programs can also receive mini-grant funding to develop collaborative STEM-focused projects. To date, over 27,000 participants have been served in 241 mini-grant projects, and over 17,000 practitioners have been served through in-person events and webinars. The NGCP’s collaborative model changes the way practitioners and educators work to advance girls’ participation in STEM. It facilitates the development of practitioners in their knowledge of good gender equitable educational practices, awareness of the role of K-12 education in STEM workforce development, and mutual support of peers locally and across the United States.
DATE: -
resource project Exhibitions
The National Federation of the Blind (NFB), with six science centers across the U.S., will develop, implement, and evaluate the National Center for Blind Youth in Science (NCBYS), a three-year full-scale development project to increase informal learning opportunities for blind youth in STEM. Through partnerships and companion research, the NCBYS will lead to greater capacity to engage the blind in informal STEM learning. The NCBYS confronts a critical area of need in STEM education, and a priority for the AISL program: the underrepresentation of people with disabilities in STEM. Educators are often unaware of methods to deliver STEM concepts to blind students, and students do not have the experience with which to advocate for accommodations. Many parents of blind students are ill-equipped to provide support or request accessible STEM adaptations. The NCBYS will expose blind youth to non-visual methods that facilitate their involvement in STEM; introduce science centers to additional non-visual methods that facilitate the involvement of the blind in their exhibits; educate parents as to their students' ability to be independent both inside and outside the STEM classroom; provide preservice teachers of blind students with hands-on experience with blind students in STEM; and conduct research to inform a field that is lacking in published material. The NCBYS will a) conduct six regional, two-day science programs for a total of 180 blind youth, one day taking place at a local science center; b) conduct concurrent onsite parent training sessions; c) incorporate preservice teachers of blind students in hands-on activities; and d) perform separate, week-long, advanced-study residential programs for 60 blind high school juniors and seniors focused on the design process and preparation for post-secondary STEM education. The NCBYS will advance knowledge and understanding in informal settings, particularly as they pertain to the underrepresented disability demographic; but it is also expected that benefits realized from the program will translate to formal arenas. The proposed team represents the varied fields that the project seeks to inform, and holds expertise in blindness education, STEM education, museum education, parent outreach, teacher training, disability research, and project management. The initiative is a unique opportunity for science centers and the disability population to collaborate for mutual benefit, with lasting implications in informal STEM delivery, parent engagement, and teacher training. It is also an innovative approach to inspiring problem-solving skills in blind high school students through the design process. A panel of experts in various STEM fields will inform content development. NCBYS advances the discovery and understanding of STEM learning for blind students by integrating significant research alongside interactive programs. The audience includes students and those responsible for delivering STEM content and educational services to blind students. For students, the program will demonstrate their ability to interface with science center activities. Students will also gain mentoring experience through activities paired with younger blind students. Parents and teachers of blind students, as well as science center personnel, will gain understanding in the experiences of the blind in STEM, and steps to facilitate their complete involvement. Older students will pursue design inquiries into STEM at a more advanced level, processes that would be explored in post-secondary pursuits. By engaging these groups, the NCBYS will build infrastructure in the informal and formal arenas. Society benefits from the inclusion of new scientific minds, resulting in a diverse workforce. The possibility for advanced study and eventual employment for blind students also reduces the possibility that they would be dependent upon society for daily care in the future. The results of the proposed project will be disseminated and published broadly through Web sites; e-mail lists; social media; student-developed e-portfolios of the design program; an audio-described video; and presentations at workshops for STEM educators, teachers of blind students, blind consumer groups, researchers in disability education, and museum personnel.
DATE: -