RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
This project builds on an NSF-funded program which engaged youth in the creation of art-science experiences that use the biology and the experiences of migratory birds as a means for communicating the impact of a changing climate.
DATE:
-
TEAM MEMBERS:
Rebecca SafranShawhin RoudbariMary Osnes
DuPage Children’s Museum will conduct an in-depth, iterative evaluation of the museum’s Questioneers traveling exhibit and create a permanent 2,000 square-foot, bi-lingual Questioneers exhibit along with related programming that promotes inclusivity and ignites children’s interest in mathematics, science, engineering, and architecture. The exhibit and programming also will help reduce the impact of socioeconomic disparities that are known to discourage underrepresented and underserved populations from pursuing their interest in STEM fields. The exhibit and its related programming will feature characters, activities, and challenges from bestselling children’s books. The museum will coordinate exhibit design and fabrication with community partners.
The Louisiana Children’s Museum is developing a comprehensive set of resources entitled “Water Dialogues–Living with Water,” designed around its new exhibits and landscape resources, to strengthen the community’s understanding of the challenges associated with water management. They are creating a new field trip series and water-based science curriculum, “Water Pathways” as well as an outreach program, “Steward’s Ship,” to bring the program’s environmental messages to schools and camps. The museum will also conduct a professional development training series on science education for local educators implementing the state’s new science standards, in addition to a series of literacy workshops where children ages four to eight will write “how-to” books and “water journals.” To further spread the associated environmental and sustainability messages, they will organize an annual “Water Fest” program for the community.
The Children’s Museum of Indianapolis will redesign its popular Dinosphere exhibition to explore and test accessibility to ensure the discoveries from its “Jurassic Mile” dig site are accessible to all visitors. This will result in updated exhibition elements that promote accessible lifelong learning experiences for children and families of all abilities, as well as spark interest in STEM through hands-on engagement. Findings from the accessibility assessment also will inform development of industry standard guidelines for future exhibitions. The museum will disseminate the findings to arts, science, and cultural institutions.
The Field Museum of Natural History will present “Changing Face of Science,” an exhibition series targeting pre-teens and teenagers and featuring Field Museum scientists and science educators who are women or people of color. Over three years, the museum will mount six exhibitions that highlight the experiences and work of museum scientists from diverse backgrounds in a range of disciplines. Programming will include on-site field trips and virtual events during which students and educators will interact with featured researchers. By presenting the stories of individuals from groups traditionally underrepresented in scientific fields, the museum will provide role models who will show that science is accessible and inspire a diverse group of future scientists.
Creative Discovery Museum will create an indoor/outdoor, natural science gallery designed for children ages 2 to 12. Named “Unearthed,” the gallery will include exhibits on fossil layers, dinosaurs and paleontology, volcanos and volcanology, erosion and weathering, entomology, and insects. It will offer hands-on, exploratory experiences in natural science for children and their families. The new science gallery will align with state educational standards, provide more interactive learning experiences, and introduce children to real elements including dirt, water, and sand in an outdoor exhibit that reinforces the concepts presented inside the museum.
The Wyoming State Museum will implement an exhibit plan developed with content experts from across the state to produce a Prehistoric Wyoming exhibit. The exhibit will explore the prehistory of Wyoming, with a special focus on the age of dinosaurs, and will serve the needs of the museum’s three main visitor groups—local families, out-of-state tourists, and students on field trips—as determined through formative surveys and visitor feedback. Visitors will learn about the geological forces that shaped the Wyoming landscape visible today, examine the different plants and animals that have called Wyoming home through the ages, and discover the history of fossil hunters in Wyoming.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
The Accessible Oceans study will design auditory displays that support learning and understanding of ocean data in informal learning environments like museums, science centers, and aquariums. Most data presentations in these spaces use visual display techniques such as graphs, charts, and computer-generated visualizations, resulting in inequitable access for learners with vision impairment or other print-related disabilities. While music, sound effects, and environmental sounds are sometimes used, these audio methods are inadequate for conveying quantitative information. The project will use sonification (turning data into sound) to convey meaningful aspects of ocean science data to increase access to ocean data and ocean literacy. The project will advance knowledge on the design of auditory displays for all learners, with and without disabilities, as well as advance the use of technology for STEM formal and informal education. The study will include 425 participants but will reach tens of thousands through the development of education materials, public reporting, and social media. The study will partner with the Smithsonian National Museum of Natural History, Woods Hole Oceanographic Institution Ocean Discovery Center, the Georgia Aquarium, the Eugene Science Center, the Atlanta Center for the Visually Impaired, and Perkins School for the Blind.
The project will leverage existing educational ocean datasets from the NSF-funded Ocean Observatories Initiative to produce and evaluate the feasibility of using integrated auditory displays to communicate tiered learning objectives of oceanographic principles. Integrated auditory displays will each be comprised of a data sonification and a context-setting audio introduction that will help to make sure all users start with the same basic information about the phenomenon. The displays will be developed through a user-centered design process that will engage ocean science experts, visually impaired students and adults (and their teachers), and design-oriented undergraduate and graduate students. The project will support advocacy skills for inclusive design and will provide valuable training opportunities for graduate and undergraduate students in human-centered design and accessibility. The project will have foundational utility in auditory display, STEM education, human-computer interaction, and other disciplines, contributing new strategies for representing quantitative information that can be applied across STEM disciplines that use similar visual data displays. The project will generate publicly accessible resources to advance studies of inclusive approaches on motivating learners with and without disabilities to learn more about and consider careers in STEM.
This Pilots and Feasibility Studies project is supported by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
Museums and similar informal learning settings offer opportunities for children and families to learn together in an engaging way. Current exhibits rely mainly on parents, teachers, signage, and staff in science museums to provide support and guidance. Since it is not always feasible to have knowledgeable staff on hand and not all parents have the same knowledge and background, children receive varied support and people often miss the point of the learning experience or activity. This project will develop and research a new genre of Smart Science Exhibits that use artificial intelligence (AI) in an adaptive system to support children in learning science by doing science. The aim of the project is to incorporate AI adaptivity and personalization to maximize inquiry-based STEM learning and engagement in informal learning settings. This research builds on the project team's first Smart Science Exhibit (EarthShake), which uses AI vision to give interactive feedback to visitors based on their actions and guides them through scientific inquiry. In the project's preliminary work, the first smart exhibit demonstrated higher engagement and more learning gains than resulted from a traditional museum exhibit addressing the same scientific content. Smart exhibits can extend and enhance the limited support that staff and parents can provide. This project will develop and investigate adaptive approaches to mixing exploration and AI guidance, which will personalize feedback during constructive exploration. The project will build on learning science techniques and technology, proven in intelligent tutoring systems in formal settings, and apply this to different informal learning contexts. The goal is to provide just-in-time learning support, which will extend the time visitors spend with exhibits, thereby deepening inquiry-based science learning. The project is partnering with science museums and afterschool programs, which will enable thousands of children and families from a wide variety of backgrounds to use the project's smart exhibits each year. Smart Science Exhibits is funded by the Advancing Informal STEM Learning (AISL) program which supports innovative research, approaches, and resources as part of its overall strategy to enhance learning in informal environments.
Many informal learning settings are considering mixed-reality (MR) technologies to increase engagement and understanding of science. Using Smart Science Exhibits, the project will investigate how design choices in mixed-reality systems impact users' engagement and learning of STEM concepts. (Mixed reality is the blending of the physical world and the digital world, enabling interaction between human and artificial intelligence.) Project research will extend current research, which is largely descriptive, by investigating empirical results on learner outcomes. Key research questions are: What types of adaptivity and personalization can improve Smart Science Exhibits and MR systems generally? What balance of exploration and AI guidance is best to maximize enjoyment, engagement and learning? Do findings about the effective features of Smart Science Exhibits generalize to different content areas and informal learning settings? The project will employ user-centered design research, formative evaluation, and controlled experimentation to discover how mixed-reality systems should be designed to best meet visitor and staff needs in informal learning settings including multiple museums and afterschool providers. Data on learner behaviors in mixed-reality experiences in a variety of informal settings will inform the design of Smart Science Exhibits. The project will investigate whether adaptive approaches generalize across content and context to achieve better STEM learning, engagement, collaboration, and productive dialogue. The project will incorporate the team's prior technical research, which developed both vision techniques to track children's physical interactions and interactive pedagogical techniques to provide scaffolds for and reactive feedback on children's inquiry and construction behaviors. New technical research will develop AI techniques for adaptive task selection and personalized feedback that draws on a visitor's history of interaction. Project research and design resources will be widely shared with the science museum educators and designers through presentations at annual conferences and with researchers, developers and others through peer-reviewed journal publications and professional publications.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Nesra YannierScott HudsonKen Koedinger
The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. An ongoing challenge to the design of effective STEM learning exhibits for diverse young children is the absence of reliable and evidence-based resources that designers can apply to the design of STEM exhibits that draw upon play as a child's primary pedagogy, while simultaneously engaging children with STEM content and processes that support development of STEM skills such as observation. To address these challenges, the project team will use a collaborative process in which learning researchers and informal STEM practitioners iteratively develop, design, and test the STEM for Play Framework that could then be applied to the design of STEM-focused exhibits that support play and STEM skill use among early learners.
This Research in Service to Practice project will address these questions: 1) What is a framework for play in early STEM learning that is inclusive of children's cultural influences?; 2) To what extent do interactions between early learners (ages 3-8) and caregivers or peers at exhibits influence the structure and effectiveness of play for supporting STEM skill development?; 3) How do practitioners link play to STEM skill development, and to what extent does a framework for play in early STEM learning assist in identifying types of play that supports early STEM skill development?; and 4) What do practitioners identify as best practices in exhibit design that support the development of STEM skills for early childhood audiences, and conversely, to what extent do practitioners perceive specific aspects of the design as influential to play? The project team will address these questions across four phases of study that will include (a) development of a critical research synthesis to inform the initial STEM for Play framework; (b) the use of surveys, focus groups, and interviews to solicit feedback from practitioners; (c) testing and revising the framework by conducting structured observations of STEM exhibits at multiple museums. The project team will use multiple analytic approaches including qualitative thematic analyses as well as inferential statistics. Results will be disseminated to children?s museums, science centers, and research communities.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Very little is known about the experiences of people with learning disabilities in informal learning environments such as science centers and museums. This project will describe the ways in which engagement and intrinsic motivation for learning are and are not supported for visitors with learning disabilities, and build capacity for informal STEM education practitioners to apply this learning for the benefit of those with learning disabilities as well as any visitor who needs more support in the context of self-directed learning. Broadening participation science, technology, engineering and math (STEM) is a core goal of the National Science Foundation and its Advancing Informal STEM Learning (AISL) program. This project pursues this goal with a focus on young people with learning disabilities. As the largest group of individuals with disabilities in the United States, people with learning disabilities make up an estimated 20% of the U.S. population. Science professions offer many life- and work-related opportunities for individuals with learning disabilities, and the flexible experiences of informal learning spaces offer important opportunities to promote participation, engagement in and motivation for science. This work represents the next generation of accessible design to broaden participation in, and impacts of, informal STEM learning opportunities. This project will generate guidelines and resources to support inclusive design for this group of visitors. Resources will include a Toolkit of Visual Assets that can be shared digitally and in print with youth with learning disabilities, informal STEM practitioners, and the learning disability research and practice community.
The project will develop empirical knowledge to support informal STEM practitioners to better facilitate the inclusion of youth with learning disabilities. Using the lens of Self-Determination Theory as an explanatory framework, this research will be pursued in three phases. Self-Determination Theory describes the psychological needs that must be met, such as autonomy and feelings of efficacy, to create an environment that supports individuals' engagement in self-motivated behaviors. Phase 1 will be an exploratory study describing the engagement and motivation of adolescents (ages 10-17) with learning disabilities when experiencing varied STEM exhibits. This first phase will adapt validated scales, employ an existing observation protocol, and conduct stimulated recall interviews with youth. Phase 2 will explore, develop and investigate design strategies to improve the intrinsic motivation of youth with learning disabilities at educational STEM exhibits. This second phase will involve a set of experimental studies in which design strategies related to intrinsic motivation are manipulated to inform principles of inclusive design for visitors with learning disabilities. As in the previous phase, Phase 2 will adapt validated scales and employ an existing observation protocol. Phase 3 will focus on design charrettes in which researchers and practitioners work with high school students with learning disabilities in a co-design process. The charrettes will generate guidelines and case examples of exhibit components using Universal Design for Learning to balance varying design priorities and effectively, inclusively design exhibits for this population. This third phase will rely on qualitative coding of co-design charette artifacts, field notes and researcher reflections; member checking will play an important role in the coding process. Dissemination efforts for this project will target youth with learning disabilities, informal STEM education practitioners, and the broader field of learning disability researchers and practitioners. In addition to the exhibit design guidelines and Toolkit described above, the project will publish peer reviewed articles and develop manuscripts aimed at educational research and practice.
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.