Grounded in the informal science education experiences of our partners around the country, Every Hour Counts developed this resource guide to profile promising strategies to advance informal STEM learning. The guide features: (1) Core elements of the national Frontiers in Urban Science Exploration (FUSE) strategy. (2) Overview of the The After-School Corporation's FUSE strategy and lessons learned in working to bring ISE to scale. (3) Profiles of city and county-wide initiatives, through the lens of a few key strategies to build after-school systems: advocacy, brokering relationships, building
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers
DATE:
TEAM MEMBERS:
National Research CouncilMargaret HoneyGreg PearsonHeidi Schweingruber
The article discusses the research which showed that the usage of drama in the classroom by the educators can promote a deeper learning in the variety of verbal fields. Drama has been considered as an effective tool to improve the accomplishment in story understanding, reading achievement, reading preparedness and writing. The result has demonstrated that the drama helps the children to master the texts they enact and to practice the new materials that are not yet enacted. The study has showed that drama instruction can serve as a creative and effective instrument for learning that exceeds
Suitable for planners, educationalists and environmentalists, this book introduces the theory and the practice of children's participation, and its importance for developing democracy and sustainable communities.
Although schools traditionally take their pupils to Natural History Museums, little has been elicited about either the overall content of the conversations generated by such groups or of the effect on content in the presence of an adult. Transcripts were coded using a systemic network which had been designed based on pilot studies. A range of variables was created from the coded data. The number of conversations that contained at least one reference to the designated categories were ascertained overall and those of the three sub-groups, pupils and teacher, pupils and chaperone and pupils alone
This toolkit provides materials to better prepare role models to engage girls in STEM. The toolkit provides instructional materials, activities, and professional development resources.
Climate Change: NASA’s Eyes on the Arctic is a multi-disciplinary outreach program built around a partnership targeted at k-12 students, teachers and communities. Utilizing the strengths of three main educational outreach institutions in Alaska, the Challenger Learning Center of Alaska partnered with the University of Alaska Museum of the North, the Anchorage Museum and UAF researchers to build a strategic and long lasting partnership between STEM formal and informal education providers to promote STEM literacy and awareness of NASA’s mission. Specific Goals of the project include: 1) Engaging and inspiring the public through presentation of relevant, compelling stories of research and adventure in the Arctic; 2) strengthening the pipeline of k-12 students into STEM careers, particularly those from underserved groups; 3) increasing interest in science among children and their parents; 4) increasing awareness of NASA’s role in climate change research; and 5) strengthening connections between UAF researchers, rural Alaska, and Alaska’s informal science education institutions. Each institution chose communities with whom they had prior relationships and/or made logistical sense. Through discussions analyzing partner strengths, tasks were divided; the Challenger Center taking on the role of k-12 curriculum development, the Museum of the North creating animations with data pulled from UAF research, to be shown on both in-house and traveling spherical display systems and the Anchorage Museum creating table top displays for use in community science nights. Each developed element was used while visiting the identified communities both in the classroom environment and during the community science nights.
The goal of this project is to advance STEM education in Hawaii by creating a series of educational products, based on NASA Earth Systems Science, for students (grades 3-5) and general public. Bishop Museum (Honolulu HI) is the lead institution. NASA Goddard Space Flight Center is the primary NASA center involved in the project. Partners include Hawaii Department of Education and a volunteer advisory board. The evaluation team includes Doris Ash Associates (UC Santa Cruz) and Wendy Meluch of Visitor Studies Inc. Key to this project: the NASA STEM Cohort, a team of six current classroom teachers whom the Museum will hire. The cohort will not only develop curricula on NASA earth science systems but also provide guidance to Bishop Museum on creating museum educational programming that best meets the needs of teachers and students. The overall goal of Celestial Islands is to advance STEM education in Hawaii through the use of NASA Earth Science Systems content. Products include: 1) combined digital planetarium/Science on a Sphere® program; 2) traveling version of that program, using a digital planetarium and Magic Planet; 3) curricula; 4) new exhibit at Bishop Museum on NASA ESS; 5) 24 teacher workshops to distribute curricula; 6) 12 community science events. The project's target audience is teachers and students in grades 3-5. Secondary audiences include families and other members of the general public. A total of 545,000 people will be served, including at least 44,000 students.
Bridging Earth and Mars (BEAM): Engineering Robots to Explore the Red Planet engages the general public and K-8 students in exhibits and programs designed to foster awareness of robotic technology, computer programming, and the challenges and opportunities inherent in NASA missions and S-STEM careers. The Saint Louis Science Center (SLSC) of St. Louis, Missouri is the lead institution and project site; partners include Washington University in St. Louis, Saint Louis University, the St. Louis regional FIRST Robotics organization, and the Challenger Learning Center-St. Louis. Project goals are to: 1) inform, engage, and inspire the public to appreciate NASA’s Mission by sharing findings and information about NASA’s missions to Mars; 2) ignite interest in S-STEM topics and careers for diverse K-8 students; and, 3) encourage students in grades 6-8 to sustain participation in educational experiences along the S-STEM careers pipeline. The SLSC will design and build a Martian surface and panorama where two rovers can be remotely controlled. Visitors in the McDonnell Planetarium will use controllers to program rover exploration of the Martian landscape in real-time. Visitors in SLSC’s Cyberville gallery, located one-quarter mile away across a highway-spanning enclosed bridge, will program the second rover with simulated time lag and view its movements via a two-way camera system. SLSC will organize and host a series of Innovation Workshops for K-8 students, each featuring teamwork-building engineering challenges from current and updated NASA-based science curricula. Participants will be recruited from SLSC community partners, which include community centers and faith-based programs for underserved families.
The Aviation Adventure Center with Traveling Flight Science Lab is a three-year project developed by the Hiller Aviation Museum in San Carlos, California with the intention to deliver immersive STEM programming focused on aeronautics, physical science, weather and general aviation subjects for a general museum audience and K-12 school groups. The lead institution is the Hiller Aviation Museum with additional museum partners including Evergreen Aviation Museum in McMinnville, Oregon, Pueblo Weisbrod Aircraft Museum, in Pueblo, Colorado, Frontiers of Flight Museum in Dallas, Texas, and New England Air Museum in Windsor Locks, Connecticut. The two goals of the project are 1) to create an in-house laboratory-style program area, called Aviation Adventure Center, permanently located within the exhibition gallery of the Hiller Aviation Museum and 2) to create a traveling flight simulation program/exhibit, called Traveling Flight Science Lab, that toured four aviation museums, listed above. During three years of the project a total of 48,530 participants were served in 4,476 programs. The project concluded in June, 2012. The Aviation Adventure Center continues as a centerpiece of Hiller Aviation Museum programming to this day.
This article presents extracurricular lesson plans and activities about sound propagation and acoustic communication. The activities were developed by STEM researchers. They align with the Next Generation Science Standards (NGSS) and are designed for fourth-grade students.
Despite robust research literature on the need for and benefits of summer learning programs, surprisingly few federal policies target summer specifically as a time to support healthy youth development and advance learning. Providing appropriate childcare and enriching activities during the summer has traditionally been viewed as the private responsibility of families. While this arrangement may be sufficient for wealthier children, who typically access a wide variety of resources that help them grow over the summer, poorer families often struggle to access such basic resources as healthy meals
DATE:
TEAM MEMBERS:
Ron FairchildBrenda McLaughlinBrendan Costigan