This dissertation study investigates late-elementary and early-middle school field trips to a mathematics exhibition called Math Moves!. Developed by and currently installed at four science museums across the United States, Math Moves! is a suite of interactive technologies designed to engage visitors in open-ended explorations of ratio and proportion. Math Moves! exhibits emphasize embodied interaction and movement, through kinesthetic, multi-sensory, multi-party, and whole-body immersive experiences.
Many science museums and other informal-learning institutions offer exhibits and public
This paper examines STEM-based informal learning environments for underrepresented students and reports on the aspects of these programs that are beneficial to students. This qualitative study provides a nuanced look into informal learning environments and determines what is unique about these experiences and makes them beneficial for students. We provide results of a qualitative research study conducted with the Mathematics, Engineering, Science Achievement (MESA) program, an informal learning environment that has proven to be effective in recruiting, retaining and encouraging
DATE:
TEAM MEMBERS:
Cameron DensonChandra Austin StallworthChristine HaileyDaniel Householder
Purpose: An estimated 5 to 8% of elementary school students have some form of memory or cognitive deficit that inhibits learning basic math. Researchers have identified several areas where children with math learning difficulties struggle. These include a strong sense of number facts to quickly and accurately perform operations on single digit numbers, the use of strategies to solve problems which have not yet been memorized, a sense to figure out whether or not an answer is reasonable, and self-monitoring to assess one's own efficacy and understanding. To support students with math learning difficulties in grades 1 to 4, this project team will develop a series of apps for touch-screen tablets that encourage single digit operational fluency, conceptual understanding, strategy awareness, and self-understanding.
Project Activities: During Phase I project in 2012, the research team developed a prototype of the single digit addition game, following an iterative process incorporating feedback from teachers and students having difficulty with math. Nineteen students participated in a pilot study, and the researchers found that the prototype functioned well and that users were engaged by the game. In Phase II, the team will build and refine the back end system, design and develop the teacher website, and create content for games in subtraction, multiplication, and division. Researchers will carry out a pilot test of the usability and feasibility, fidelity of implementation, and promise of the game to improve learning. Students in first to fourth grade identified by teachers as having the greatest difficulty with math will participate in the pilot study. Half of the 120 students participating in the pilot study will be randomly selected to play the game as a supplement to classroom learning whereas the other half will not have access. Students in the control group will be provided the games at the end of the study. Analyses will compare pre- and post-test math scores.
Product: The web-based game, MathFacts, will include a series of apps for touch-screen tablet computers to support math learning for 1st to 4th grade students with major or sometimes intractable learning difficulties. In the game, students will learn content through mini-lessons, engage with problems in practice and speed rounds, and then receive formative feedback on their performance. Students will use and manipulate blocks, linker tubes, number lines, and interact with engaging pedagogical agents such as parrots and sloths. Students will set goals, advance to more challenging levels, and engage in competition. The game will be self-paced and will provide individualized formative assessment scaffolding when students do not know the answer to a question. A teacher management system will support professional development and will produce reports to guide instruction. The intended outcomes from gameplay will include increased fluency, conceptual understanding, strategy awareness, self-assessment, and motivation of basic math.
This project team is developing and testing a prototype of the Teachley Analytics Library, a platform intended to host third party-developed mathematics game apps for students in kindergarten through Grade 8. The prototype will include a dashboard to host games and generate formative assessment data to inform teacher instruction. In the Phase I pilot study, the team will examine whether the prototype functions as planned with 40 Grade 1 and 2 math teachers. The study will test if teachers are able to implement games within the classroom and utilize data to inform practice, and whether students are engaged by gameplay.
Researchers examined whether engineering activities and lessons can help students apply science and math content in real-world contexts and gain insights into the professional activities and goals of engineers.
The authors of this study investigated the educational potential of a digital math game called Zombie Division in an elementary classroom. Habgood & Ainsworth were interested in the effect of what they called “intrinsic integration” –linking the video game’s core mechanics of play to the educational content. The idea is linked to the field of research called intrinsic motivation, in which the only reward is pleasure in the activity itself. The researchers argue that, while a game like MathBlaster is fun, it does not embody the mathematics lesson as an intrinsic part of game play.
Pacific Science Center will expand its Science, Technology, Engineering and Math—Out-of-School Time (STEM-OST) model to new venues in the Puget Sound region to improve science literacy and increase interest in STEM careers for youth. STEM-OST brings hands-on lessons and activities in physics, engineering, astronomy, mathematics, geology, and health to elementary and middle school children in underserved communities throughout the summer months. The center will modify lessons and activities to serve students in grades K-2, align the curriculum with the Next Generation Science Standards, and increase the number of Family Science Days and Family Science Workshops offered to enhance parent involvement in STEM learning. The program will employ a tiered mentoring approach with outreach educators, teens, and education volunteers to increase interest in STEM content and provide direct links between STEM and workforce preparedness.
This is a Science Learning+ planning project that will develop a plan for how to conduct a longitudinal study using existing data sources that can link participation in science-focused programming in out-of-school settings with long-range outcomes. The data for this project will ultimately come from "mining" existing data sets routinely collected by out-of-school programs in both the US and UK. 4H is the initial out-of-school provider that will participate in the project, but the project will ideally expand to include other youth-based programs, such as Girls Inc. and YMCA. During the planning grant period, the project will develop a plan for a longitudinal research study by examining informal science-related factors and outcomes including: (a) range of educational outcomes, (b) diversity and structure of learning activities, (c) links to formal education experiences and achievement measures, and (d) structure of existing informal science program data collection infrastructure. The planning period will not involve actual mining of existing data sets, but will explore the logistics regarding data collection across different informal science program, including potential metadata sets and instruments that will: (a) identify and examine data collection challenges, (b) explore the implementation of a common data management system, (c) identify informal science programs that are potential candidates for this study, (d) compare and contrast data available from the different programs and groups, and (e) optimize database management.
Young people's participation in informal STEM learning activities can contribute to their academic and career achievements, but these connections are infrequently explicitly recognized or cultivated. More systemic approaches to STEM education could allow for students' experiences of formal and informal STEM learning to be aligned, coordinated, and supported across learning contexts. This Science Learning+ planning project brings together stakeholders in two digital badge systems--one in the US and one in the UK--to plan for a study to identify the specific structural features of the systems that may allow for the alignment of learning objectives across institutions. Digital badge systems may offer an inventive solution to the challenge of connecting and building on youth's STEM-related experiences in multiple learning contexts. When part of a defined system, badges could be used to represent and communicate evidence of individual learning, as well as provide youth and educators with evidence-supported indicators for other activities in the system that might be interesting or valuable. Properly designed and supported badge systems could transmit critical information within a network of informal STEM programs and schools that (1) recognize context-dependent, interest-driven learning and (2) provide opportunities to explore those interests across multiple settings. This project advances the field of informal STEM learning in two ways. First, the project documents and analyzes the processes by which two small groups of informal science education organizations and schools negotiate the meaning and value of badges, as proxies for learning objectives, and how they decide to recognize badges awarded by other institutions. This process builds capacity within the target systems while also beginning to identify the institutional, cultural, and material capacity issues that facilitate or constrain the alignment process. Second, the project conducts a pilot study with a small number of youth in the US and UK to investigate factors associated with an individual youth's likelihood of: a) identifying badges of interest; b) connecting the activities of various badge systems to each other and to non-badging institutions, such as school or industry; c) determining which badges to pursue; and d) persisting in a particular badge pathway. Findings from this pilot study will help identify institution- and individual-level factors that might be associated with advancing student interest and progression in STEM fields. Deepening and validating the understanding of those factors and their relative impact on student experiences and outcomes will be the focus of investigations in future studies.
DATE:
-
TEAM MEMBERS:
James DiamondNew York City Hive Learning NetworkMOUSEDigitalMeKatherine McMillan
President Obama announced in April 2013 that the Corporation for National and Community Service (CNCS) would launch a STEM AmeriCorps initiative to build student interest in STEM. A RFA is currently being prepared to be released in the late fall of 2013. This project will engage in quick response research to identify an evaluation and research agenda that can begin to inform the program launch. Thus, the timeframe for informing the initial stages of STEM AmeriCorps is relatively short, and the creation of an evaluation and research agenda is very timely. The products from the RAPID proposal are: (1) a review of the evaluation and research literature on the use of volunteers and/or mentors to build students' interest in STEM; (2) to convene a workshop to identify evaluation and research priorities to guide the initiative; and (3) a summary evaluation agenda that identifies promising directions along with the strength of evidence around key issues.
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.
STEMtastic: NASA in Our Community is a two-year project designed to educate and inspire teachers, students and life-long learners to embrace NASA STEM content. The project will increase awareness of NASA activities, while educating and inspiring students to train for careers that are critical to future economic growth of the country in general, and NASA’s future missions in particular. The Virginia Air & Space Center (VASC) will partner with the Virginia Space Grant Consortium and Analytical Mechanics Associates, Inc. to accomplish this project. VASC will deliver NASA STEM content through (1) STEMtastic Teacher Institutes and Education Modules: (a) a series of two five-day professional development institutes for educators which will result in the (b) development and dissemination of new education modules for grades 4-9; and (2) STEMtastic Exhibits and Demonstrations: new interactive exhibits to used for live demonstrations at VASC; those demonstrations will also be delivered to traditionally underserved schools in the region. All classroom and teaching materials—educator institutes, education modules, exhibit software and demonstration modules—will be developed using NASA content and shared with other institutions to promote the expansion of knowledge about best practices in providing STEM education in both formal and informal education settings. STEMevals, a robust evaluation plan, will be implemented to assess success in each project area. Adjustments will be made along the pipeline to increase effectiveness in reaching the target audience. The project has the potential to reach countless educators, students and museum visitors throughout the U.S."