The Coalition for Science After School (CSAS) was established in 2004 in response to the growing need for more STEM (science, technology, engineering, and mathematics) learning opportunities in out-of-school time. CSAS sought to build this field by uniting STEM education goals with out-of-school time opportunities and a focus on youth development. Over a decade of work, CSAS Steering Committee members, staff and partners advocated for STEM in out-of-school-time settings, convened leaders, and created resources to support this work. CSAS leadership decided to conclude CSAS operations in 2014, as the STEM in out-of-school time movement had experienced tremendous growth of programming and attention to science-related out-of-school time opportunities on a national level. In its ten-year strategic plan, CSAS took as its vision the full integration of the STEM education and out-of-school time communities to ensure that quality out-of-school time STEM opportunities became prevalent and available to learners nationwide. Key CSAS activities included: (1) Setting and advancing a collective agenda by working with members to identify gaps in the field, organizing others to create solutions that meet the needs, identifying policy needs in the field and supporting advocates to advance them; (2) Developing and linking committed communities by providing opportunities for focused networking and learning through conferences, webinars, and other outreach activities; and (3) Identifying, collecting, capturing, and sharing information and available research and resources in the field. The leadership of the Coalition for Science After School is deeply grateful to the funders, partners, supporters, and constituents that worked together to advance STEM in out-of-school time during the last decade, and that make up today's rich and varied STEM in out-of-school time landscape. We have much to be proud of, but as a movement there is much more work to be done. As this work continues to expand and deepen, it is appropriate for the Coalition for Science After School to step down as the many other organizations that have emerged over the last decade take on leadership for the critical work that remains to be done. A timeline and summary of CSAS activities, products, and accomplishments is available for download on this page. All resources noted in the narrative are also available for download below.
Flip It, Fold It, Figure It Out! is a 1500-sq. foot traveling mathematics exhibition with companion take-home educational materials. There are two copies of the traveling exhibit: one for the members of the North Carolina Grassroots Science Museums Collaborative reaching over 500,000 visitors, and a second for travel nationally to science centers reaching an estimated 750,000 additional visitors. Take-home activity kits were developed for visitors to continue informal mathematics explorations at home. The activities included expand and extend the exhibit themes, offering multiple levels to meet the needs of K-5 students and their families.
Community Ambassadors in Science Exploration (CASE) is a new model for encouraging the appreciation and understanding of science among underserved families through: a corps of teen and adult peer presenters; a curriculum of hands-on learning experiences for families of diverse ages and backgrounds; a regional network of museum-community collaboration; integration of community and museum resources through joint programming; and a longitudinal research study of program impacts. CASE will serve over 20,000 people over three years with peer-presented family learning opportunities and museum experiences. In addition, CASE will train a total of 108 science ambassadors who will offer science workshops at community-based organizations in the languages spoken by their constituencies. Through CASE, the ambassadors will gain training and experience in informal science education that can open the door to possible future career opportunities in community and museum settings. Building on a ten-year history of museum-community collaboration, CASE will be conducted by PISEC, the Philadelphia/Camden Informal Science Education Collaborative. PISEC includes four major Philadelphia informal science institutions: The Franklin Institute, the Philadelphia Zoo, The Academy of Natural Sciences and The New Jersey State Aquarium. This organization conducts research and outreach projects in support of family science learning.
DATE:
-
TEAM MEMBERS:
Minda BorunKathleen WagnerAngela WengnerNaomi Echental
KCTS, Seattle's PBS affiliate, is producing a series of three one-hour prime-time science education television specials starring Bill Nye. The specials will be aimed at a family audience and will be designed to promote informal science learning through an entertaining presentation of science in everyday life. Topics currently being considered for the specials are The Science of Sports, The Science of Learning, and The Science of the Future, thought other topics, such as Pseudo Science, also are being considered. Each program will maintain the entertainment values of enthusiasm for science so prominent in the Bill Nye the Science Guy series but will have a strong narrative element and air of suspense as Bill embarks on a journey of discovery, greater depth of content and presentation, and longer uninterrupted segments. The programs will be supported by a multi-pronged outreach program to reach parents and children through local PBS stations and science museums, community organizations serving disadvantaged populations and, possibly, a tie-in with a national chain of quick family restaurants. Many of the same team that created Bill Nye the Science Guy will work on this project including Bill Nye; Elizabeth Brock, Executive Producer; and Erren Gottlieb and James McKenna, producers. The production team will work with fourteen scientists and science educators who will advise the project on presentation and outreach. This group also will review and comment on all scripts and drafts of outreach material.
DATE:
-
TEAM MEMBERS:
William NyeJames McKennaErren GottliebBurnill ClarkRandy Brinson
The Museum of Science in Boston will develop exhibits and programs for visitors to use models as tools for understanding the world around them. It is the 4th stage of a six-part, long-range vision and plan that focuses on comprehending science as a way of thinking and doing. "Making Models" will serve over one million visitors per year, mostly families and school groups. The models to be featured include physical, biological, conceptual, mathematical, and computer simulation models. Four (4) specific science inquiry skills will be stressed, which are associated with making and using models: recognition of similarities, assessment of limitations, communication of ideas, and the creation of one's own models for developing personal understanding and appreciation of the world in which we live. In tandem with this new exhibit, some current exhibits and programs will be modified to meet these modeling goals. Demonstrating the application of these new exhibit techniques for other museums and science centers, and evaluating how visitors learn in this setting will also be performed, with the results disseminated on a national level. The Museum will collaborate with two (2) other nationally known sites in this development and evaluation of exhibit components, creation of new teacher development programs, and the development of models-related web resources.
DATE:
-
TEAM MEMBERS:
Douglas SmithLarry BellPaul Fontiane
The Educational Develpoment Center (EDC) and National Institute on Out-of-School Time (NIOST), in collaboration with science centers in AZ, MA, TX, NY, NC and CA, will develop and implement a science curriculum for informal audiences targeting children ages 8-12. Each science center will work with six community centers that serve youth in after-school programs. Science center staff will train after-school program leaders from the 36 community centers at monthly sessions, in addition to holding monthly events for families. Curriculum development will use interesting topics aligned with national standards and structure investigations as games using simple materials. The units will enable children to work in teams, and include follow-up, discussion and extended investigations using websites. It is anticipated that each child will complete 4-6 related investigations. While the six science centers will provide the content expertise, EDC and NIOST will develop the training and assessment program and provide additional technical support for the community centers. The result will be a model to support out-of-school programs that combines science centers and community resource people, centered around an activity-based curriculum focused on inquiry. Up to 1,000 children will be involved in field tests each summer. This proposal builds on "Design It!" (ESI 98-14765), which created an informal science curriculum focused on engineering principles.
The Pittsburgh Children's Museum (PCM) is developing a 2,700 sq ft traveling exhibition, "How People Make Things," in collaboration with Family Communications, the producers of "Mister Rogers' Neighborhood." The exhibition will use the factory visit segments from this popular television program, the longest running on PBS, as a jumping off point for engaging children in the processes by which familiar objects are manufactured. PCM is building on its prior success with "Design It!," an after-school program funded by a prior NSF grant. This project extends that work to expose children to the hidden science and technology that form the basis for manufacturing. The exhibition will include the Neighborhood Factory orientation area and sections on Making Things: Designing Things, Forming Things (Additive, Subtractive, Deformational), and Assembling Things. Project collaborators include members of the Carnegie Mellon University Industrial and Engineering Design program and the University of Pittsburgh Learning Research and Development Center UPCLOSE. Broader Impact: The exhibition is projected to reach at least 750,000 visitors in nine museum venues through its nationwide tour; the target audience is families with children ages 3 to 10. Promotion and dissemination will be enhanced by the connection with PBS, which continues to air the "Mister Roger's Neighborhood" program. Partnerships with the AFL-CIO, Catalyst Communications, and Society of Manufacturing Engineers will extend the outreach effort. Special efforts will be made to target girls and underserved audiences.
Temple University's "Sisters in Science in the Community (SISCOM)" is a constructivist-based, inclusive youth/community project targeting underrepresented urban middle and high school girls in grades 6-10 and their families; it supports inclusion of girls with disabilities. It engages girls and their parents in hands-on, inquiry-based sports science in after-school, Saturday, and summer programs co-hosted by community-based organizations and Temple University. Girls will also be engaged in student-centered research projects guided by female scientists. With regard to intellectual merit, SISCOM is based on previous research done by Temple on methods for engaging girls and their parents in STEM activities. The infrastructure of research and practices in education will be facilitated through the sharing of information between the network of partners and the national community of formal and informal educators
After-School Math PLUS (ASM+) uses the rapidly growing field of informal education as a venue to develop positive attitudes, build conceptual knowledge, and sharpen skills in mathematics for underserved youth in grades 3-8. "ASM+" brings families and children together in the pursuit of mathematics education and future career interests and directly addresses the NSF-ISE's four areas of special interests: (1) builds capacity with and among informal science education institutions; (2) encourages collaborations within communities; (3) increases the participation of underrepresented groups; and (4) models an effective after-school program. " ASM+" is being developed in collaboration with the New York Hall of Science and the St. Louis Science Center with support from after-school centers in their communities. "ASM+" incorporates the best practices of existing programs, while adding its own innovative elements that have proven successful in the NSF-funded "After-School Science Plus" (HRD #9632241). "ASM+" is aimed at underserved youth and their families, as well as after-school group leaders and teenage museum explainers who will benefit from training and participation in the project. It has facilitated the creation of alliances between museums, after-school centers, schools and the community.
Community Science Workshops: Beginning a National Movement is an extension of a successful, NSF-funded project that created a network of community science centers in California. The San Francisco State University will now take this successful venture to a national level by working with the American Association for the Advancement of Science (AAAS) and Quality Education for Minorities (QEM) to establish a new Community Science Workshop (CSW) 8-10 in underserved communities over the next four years. Once sites are selected, CSW directors participate in an intensive two-week training program. This is followed by visits by site mentors, and ongoing support through the WWW and other media, which contributes to the establishment and eventual sustainability of the centers. Each site partners with larger, established museums and science centers locally to gain much needed assistance with exhibits and education programs. Community Science Workshops contain permanent exhibit space, a workshop area for student projects and classroom/storage space. They serve a variety of audiences through after school, family, school and summer science programs. Potential locations include Arizona, Florida, Louisiana, Michigan, Montana, Nebraska, New York, Tennessee, Texas, Washington and the District of Columbia.
Chabot Space and Science Center seeks support to engage in a six-month planning process for "Imagine That!," a multi-faceted science and technology career exploration program. In partnership with the Columbia River Exhibition of History, Science & Technology (CREHST) and the American Museum of Science & Energy (AMSE), Chabot proposes to fill the gap between well-intentioned and designed programs and the programs' abilities to really influence/affect future career choices by participants. "Imagine That!" will familiarize youth with a wide range of careers in scientific and technical fields through after-school and summer programs that offer in-depth career exploration and guidance activities, hands-on experiences that complement science education in school and an introduction to role models. "Imagine That!" will also provide parents with resources to support their children as they explore potential careers in science, technology and engineering. This planning grant will enable the three major science museums, Junior Achievement and government and business partners to develop the logistics for working together on an ambitious collaborative program of national scope. "Imagine That!" has the potential for broad and significant impact. Not only would it create a national program of career exploration, it will strengthen and diversify the STEM workforce. The national impact of this project is assured by the inclusion of geographically diverse partners, regional advisory councils and a robust dissemination plan.
This study (1) creates a genre of exhibit-based, group scientific inquiry programs for general and low-income museum visitors, (2) determines key program characteristics that lead to learning, (3) conducts a controlled experiment to assess the levels and nature of actual transfer of such skills to other exhibits and to visitors' lives beyond the museum visit. A team of researchers and educators creates, revises, and studies Exhibit Investigations for general and underserved visitors at the Exploratorium. During Investigations, educators coach visitors in inquiry skills that are heuristics for engaging with exhibits or physical phenomena beyond the museum. Pre- and post-assessments of learner interactions with a novel exhibit are recorded and analyzed for evidence of transfer of the inquiry skills introduced during the Investigations. Exit and follow-up interviews determine long-term impact. Two versions of the Investigations-with and without mnemonic cards summarizing inquiry skills-are compared with two control conditions in a randomized block design with four conditions and 50 groups per condition. Intellectual Merit The project broadens the focus of current research on the learning of scientific inquiry skills beyond the school setting. A science museum with engaging and interactive exhibits constitutes an ideal and understudied setting for research on inquiry learning by groups. This project . describes the nature of inquiry learning in an informal learning environment . generates principles for using audience diversity to enhance learning identifies specific inquiry skills that are relevant and effective in this environment . assesses levels of transfer of such skills by visitors . compares such transfer to control groups receiving no mediation or content-based mediation The exhibit-based, group inquiries adapt best practices from formal education for use in the multigenerational, free-choice learning environment of a museum. The research yields a series of effective programs and a set of theoretical principles that account for their efficacy. Broader Impacts Project results and learning principles will be disseminated to academic, museum, and lay audiences. In total, the project serves approximately 1,000 Exploratorium visitors. The project will is presented at national and local conferences such as AERA, ASTC, VSA, and AAM, reaching museum researchers, practitioners, and a broad educational research community. Articles are submitted to peer-review journals in the fields of museum studies and science education. Project updates and the final report are posted on the Exploratorium Web site (visited by 15 million annually). Outcomes are disseminated to the Center for Informal Learning and Schools (CILS), an initiative of the Exploratorium, Kings College London, and UC Santa Cruz. A non-technical publication, distributed through the Association of Science-Technology Centers (ASTC), informs science centers around the world.