Many museum professionals believe that immersive exhibits—those that surround visitors—provide more attractive, engaging and effective learning experiences than tabletop exhibits. We investigated this claim by comparing visitors’ experiences of the two exhibit types, using pairs of exhibits that differed in scale (immersive vs. tabletop), but shared the same content and similar visitor activity. We randomly selected, videotaped, interviewed, and sent follow-up surveys to sixty families who experienced immersive exhibits and sixty families who experienced tabletop exhibits. We found that each
This CRPA project is about research on climate change impacts in the Amazonian rain forest and about motivating youth to consider science as a career objective. The project is an exhibit in Biosphere 2 in Arizona wherein a rain forest is maintained and will be used to augment the exhibit of large photos of scientists doing research. Particular attention will be paid to female scientists to motivate young girls. Biosphere 2 and the Girl Scout Council of Southern Arizona will collaborate to attract girls through free admission days to Biosphere 2. These large photos will be equipped with sound and video so that as a visitor approaches the photo, the sounds of the forest as well as the researcher(s) will be heard. At this point the researcher, in the photograph, will begin a monologue with the visitor explaining what scientists are investigating and who the other workers are. In this monologue, the researcher will explain what they are doing specifically, why they are investigating this subject, and what they plan to derive as a scientific result. The exhibit will consist of fifty very large photographs (3x5 feet) with sound access via smart phones and headsets. In addition, there will be hands on equipment and docents for questions and discussion. The venue receives about 100,000 visitors per year consisting mainly of families, tourists, and clubs. Through this exhibit, the researchers intend to motivate youth to develop interests in STEM topics. Girls are the main target audience. For families and tourists, the exhibit communicates the message of how science is being used to determine the effect of climate change on rain forests and how that would affect other aspects of weather and the global environment.
DATE:
-
TEAM MEMBERS:
Scott SaleskaBruce JohnsonJoost van HarenJennifer Fields
Currently, many museums present histories of science and technology, but very few are integrating scientific activity--observation, measurement, experimentation-with the time- and place-specific narratives that characterize history-learning experiences. For the Prairie Science project, Conner Prairie is combining proven science center-style activities, developed by the Science Museum of Minnesota, with family-engagement strategies developed through extensive research and testing with audiences in historical settings. The goal of this integration is to create guest experiences that are rich in both STEM and historical content and encourage family learning. One key deliverable of this project is the Create.Connect gallery, which is currently installed at Conner Prairie. Create.Connect allows the project team to evaluate and research hands-on activities, facilitation strategies and historic settings to understand how these elements combine to encourage family conversations and learning around historical narratives and STEM content. For example, in one exhibit area families can experiment with creating their own efficient wind turbine designs while learning about the innovations of the Flint & Walling windmill manufacturing company from Indiana. The activity is facilitated by a historic interpreter portraying a windmill salesman from 1900. The interpreter not only guides the family though the process of scientific inquiry, but shares his historic perspective on wind power as well. Two other exhibit areas invite hands-on exploration of electrical circuits and forces in motion as they connect to stories from Indiana history. Evaluation and research findings from the Create.Connect exhibit will be used to develop a model that can guide other history institutions that want to incorporate STEM content and thinking into their exhibits and interpretation. By partnering with the Science Museum of Minnesota, we will combine the experience of science center professionals and history museum professionals to find the best practices for incorporating science activities into historic settings. To ensure that this dissemination model is informed from many perspectives, Conner Prairie has invited the participation of four history museums: The Museum of America and the Sea, Mystic, Connecticut; the California State Railroad Museum, Sacramento, California; the Wabash County Historical Society, Wabash, Indiana; and the Oliver H. Kelley Farm, Elk River, Minnesota. Each of the four participants will install history-STEM exhibit components which will be connected to location-specific historic narratives. Drawing on the staff experience and talents of participant museums, this project will develop realistic solutions to an array of anticipated barriers. These issues and the resulting approaches will become part of a stronger, more adaptable dissemination model that will support history museums in creating STEM-based guest experiences.
The University of California, Davis Tahoe Environmental Research Center (TERC), UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES), ECHO Lake Aquarium and Science Center (ECHO), UC Berkeley Lawrence Hall of Science (LHS), and the Institute for Learning Innovation (ILI) will study how 3-D visualizations can most effectively be used to improve general public understanding of freshwater lake ecosystems and Earth science processes through the use of immersive three-dimensional (3-D) visualizations of lake and watershed processes, supplemented by tabletop science activity stations. Two iconic lakes will be the focus of this study: Lake Tahoe in California and Nevada, and Lake Champlain in Vermont and New York, with products readily transferable to other freshwater systems and education venues. The PI will aggregate and share knowledge about how to effectively utilize 3-D technologies and scientific data to support learning from immersive 3-D visualizations, and how other hands-on materials can be combined to most effectively support visitor learning about physical, biological and geochemical processes and systems. The project will be structured to iteratively test, design, and implement 3-D visualizations in both concurrent and staggered development. The public will be engaged in the science behind water quality and ecosystem health; lake formation; lake foodwebs; weather and climate; and the role and impact of people on the ecosystem. A suite of publicly available learning resources will be designed and developed on freshwater ecosystems, including immersive 3-D visualizations; portable science stations with multimedia; a facilitator's guide for docent training; and a Developer's Manual to allow future informal science education venues. Project partners are organized into five teams: 1) Content Preparation and Review: prepare and author content including writing of storyboards, narratives, and activities; 2) 3-D Scientific Visualizations: create visualization products using spatial data; 3) Science Station: plan, design, and produce hands-on materials; 4) Website and Multimedia: produce a dissemination strategy for professional and public audiences; 4) Evaluation: conduct front-end, formative, and summative evaluation of both the 3-D visualizations and science activity stations. The summative evaluation will utilize a mixed methods approach, using both qualitative and quantitative methods, and will include focus groups, semi-structured interviews, web surveys, and in-depth interviews. Leveraging 3-D tools, high-quality visual displays, hands-on activities, and multimedia resources, university-based scientists will work collaboratively with informal science education professionals to extend the project's reach and impact to an audience of 400,000 visitors, including families, youth, school field trip groups, and tourists. The project will implement, evaluate, and disseminate knowledge of how 3-D visualizations and technologies can be designed and configured to effectively support visitor engagement and learning about physical, biological and geochemical processes and systems, and will evaluate how these technologies can be transferred more broadly to other informal science venues and schools for future career and workforce development in these critical STEM areas.
In partnership with the University of Pennsylvania's Graduate School of Education, The Franklin Institute Science Museum will develop, test, and pilot an exportable and replicable cyberlearning exhibit using two cutting edge technologies: Augmented Reality (AR) and Virtual Reality (VR). The exhibit's conceptualization is anchored in the learning research vision of the NSF-funded workshop Cyberinfrastructure for Education and Learning for the Future (Computing Research Association, 2005). The incorporation of VR and AR technologies into the Franklin Institute's electricity and Earth science exhibits is an innovation of traditional approaches to hands-on learning and will improve the quality of the learning experience for the primary audience of families with children and elementary school groups. The project has implications for future exhibit development and more broadly, will provide new research on learning on how to incorporate cyberlearning efforts into traditional exhibits. Fifteen participating exhibit developers across the ISE field will assist in the evaluation of the new exhibit; receive training on the design and development of VR and AR exhibits for their institutions; and receive full access to the exhibit's new software for implementation at their informal learning sites. The technology applications will be developed by Carnegie Mellon University's Entertainment Technology Center--leaders in the field in Virtual Reality design and development. Front-end and formative evaluation will be overseen internally by the Franklin Institute. The Institute for Learning Innovation will conduct the summative evaluation. Research will be conducted by the University of Pennsylvania's Graduate School of Education on the effects of AR and VR technologies on exhibit learning.
This presentation outlines the front-end and formative evaluation of the redesigned Ancient Worlds Gallery at the Milwaukee Public Museum (MPM), set to open in the spring of 2015. The gallery will contain artifacts, props, and interactives pertaining to ancient Near Eastern, Egyptian, Greek, and Roman cultures. The previous MPM exhibition featuring these civilizations was presented chronologically; for this new gallery, six themes have been selected to guide the visitor experience: construction, communion, community, communication, commerce, and conflict. When affiliated with the Institute for
This evaluation provides feedback from a tracking and timing study from the project "Seeing: The Interaction of Physiology, Culture, and Technology" at the Exploratorium. The evaluation concludes that Seeing is a large, complex collection of loosely related exhibit elements that attract and hold visitors’ attention well, but not exceptionally well. Yet, given the size and scope of the exhibits, a longer average time and more stops would not be expected. The individual interactive elements range from many that are modestly engaging, to some that are highly engaging, with a few exceptionally
This report includes six separate formative evaluations conducted to inform the design and development of the deliverables for the 3D Visualization Tools for Enhancing Awareness, Understanding and Stewardship of Freshwater Ecosystems project. Deliverables were tested with both students and general visitor groups, with a focus on groups including late elementary and middle school children. Many different components were tested, including prototype versions of 3D visualizations, high-tech interactive experiences, apps on tablets and phones, and table top exhibits. Results are reported in each of
In 2008, COSI received funding from the Institute of Museum and Library Services to develop the exhibit Labs in Life (LG-26-08-0146). The development of the Labs in Life embodies a unique model for collaboration, with active researchers interested in research outcomes while simultaneously serving as models for the public, and science center staff concurrently gleaning new and changing content for exhibits and programs. While each partner is motivated by many different goals, all agree that they are interested in stimulating public interest in and understanding of science and technology
DATE:
TEAM MEMBERS:
Institute for Learning InnovationJoe E Heimlich
COSI, in partnership with WOSU @ COSI, will be going forward with a project in which enhancements and other changes may be made to the WOSU exhibition space, entrance area, and adjacent hallway. This project may include, but is not limited to, introducing more elements of the PBS Kids brand, such as Sesame Street and Sid the Science Kid, into the exhibition space, introducing interactive elements regarding TV Production to the site, and adding loose parts to the Chroma Key exhibit. To inform decisions about the type and nature of enhancements most needed in the exhibit area, COSI desires to
Magnolia Consulting, LLC conducted a formative and summative evaluation to examine public perceptions of the utility and quality of two labs/exhibits within the North Carolina Museum of Natural Sciences Natural World Investigate Lab, Biofuels and Science of Scent. Appendix includes survey.
DATE:
TEAM MEMBERS:
North Carolina State Museum of Natural ScienceMary Styers
This report contains findings from a summative evaluation study of a set of four featured elements that comprise the new Nature Research Center of the North Carolina Museum of Natural Sciences. The elements were: 1) an exhibit, Ancient Fossils, New Discoveries; 2) Investigate Labs; 3) Daily Planet Scientist Talks; 4) Science Cafes. Evaluation was conducted as four distinct, multi-method studies to provide targeted understanding of visitor outcomes and experiences at each element. Findings across the four elements indicate that the features of the NRC are enjoyed by visitors and each supports