This research examines the Tree Investigators project to support science learning with mobile devices during family public programmes in an arboretum. Using a case study methodology, researchers analysed video records of 10 families (25 people) using mobile technologies with naturalists at an arboretum to understand how mobile devices supported science talk related to tree biodiversity. The conceptual framework brings together research on technological supports for science learning and research on strategies that encourage families to engage in conversations that support observation and
Program evaluators from the Education Development Center (EDC) used a mixed-methods, quasi-experimental design to evaluate the impact on girls’ awareness and interest in science, technology, engineering, and mathematics (STEM). After the final year of the project, EDC delivered a summative report to Techbridge Girls (TBG), which was based on data collected during the five-year grant period, with a particular focus on the final year that grant funds supported programming (2017-18). Data included pre- and post-surveys with TBG participants and comparison students, participant focus groups, and
Children Investigating Science with Parents and Afterschool (CHISPA) was a collaboration between the Phillip and Patricia Frost Museum of Science, UnidosUS (formerly National Council of La Raza), and the ASPIRA Association that took place from 2014-18. CHISPA sought to address the disparity in science achievement among Latino and non-Latino children through local-level partnerships between science museums in metropolitan areas with growing Latino populations and UnidosUS and ASPIRA affiliate organizations serving the same communities through afterschool programs.
Partners included the
The purpose of this study was to explore whether the notion of activity frames might be a useful alternative to sociomathematical norms to help describe the behaviors of family members at interactive math exhibits. In this study, activity frames are defined as contextspecific, emergent understandings or expectations, either implicit or explicit, about the nature and goals of family and staff interactions at math exhibits (Pattison et al., in review; Pattison, Gontan, & Ramos-Montañez, in review). Researchers questioned not only whether activity frames could describe family behaviors, but also
My Sky is a joint project between Boston Children’s Museum (BCM) and the Smithsonian Astrophysical Observatory (SAO). This three-year project was supported by NASA’s NRA/ROSES 2011 (NNX12AB91G) program, and resulted in the creation of My Sky, a 1,500 sq. ft. traveling astronomy exhibit designed for adults and children, ages 5 – 10. My Sky emphasizes authentic experiences that encourage the development of skills and content foundational to later appreciation and understanding of astronomical science. My Sky includes interactive explorations of objects and phenomena visible in the sky, encouraging families to “look up” not only when they visit the exhibit, but as a practice they might adopt in their everyday lives. This is all punctuated by real NASA data and assets, including a 5’ diameter model Moon created using the latest Lunar Reconnaissance Orbiter measurements; and high-resolution images from NASA’s Solar Dynamics Observatory satellite. This project also developed a series of public programs, museum staff training programs, and family workshops, all utilizing NASA resources and existing curriculum.
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
The University of Alaska Fairbanks will partner with the National Optical and Astronomy Observatory, the University of Alaska Museum of the North, and the University of Washington-Bothell to bring biomaterials, optics, photonics, and nanotechnology content, art infused experiences, and career awareness to art-interested girls. This full scale development project, Project STEAM, will explore the intersections between biology, physics, and art using advanced technologies at the nano to macro scale levels. Middle school girls from predominately underrepresented Alaskan Native, Native American (Tohono O'odham, Pascula Yaqui) and Hispanic groups, their families, teachers, and Girl Scout Troop Leaders in two site locations- Anchorage, Alaska and Tucson, Arizona will participate in the project. Centered on the theme "Colors of Nature," Project STEAM will engage girls in science activities designed to enhance STEM learning and visual-spatial skills. Using advanced technologies, approximately 240 girls enrolled in the Summer Academy over the project duration will work with women scientist mentors, teachers, and Girl Scout Troop Leaders to create artistic representations of natural objects observed at the nano and macro scale levels. Forty girls will participate in the Summer Academy in year one (20 girls per site- Alaska and Arizona). In consequent years, approximately180 girls will participate in the Academy (30 girls per site). Another 1,500 girls are expected to be reached through their Girl Scout Troop Leaders (n=15) who will be trained to deliver a modified version of the program using specialized curriculum kits. In addition, over 6,000 girls and their families are expected to attend Project STEAM Science Cafe events held at local informal science education institutions at each site during the academic year. In conjunction with the programmatic activities, a research investigation will be conducted to study the impact of the program on girls' science identity. Participant discourse, pre and post assessments, and observed engagement with the scientific and artistic ideas and tools presented will be examined and analyzed. A mixed methods approach will also be employed for the formative and summative evaluations, which will be conducted by The Goldstream Group. Ultimately, the project endeavors to increase STEM learning and interest through art, build capacity through professional development, advance the research base on girls' science identity and inspire and interest girls in STEM careers.
The University of California, Davis Tahoe Environmental Research Center (TERC), UC Davis W.M. Keck Center for Active Visualization in the Earth Sciences (KeckCAVES), ECHO Lake Aquarium and Science Center (ECHO), UC Berkeley Lawrence Hall of Science (LHS), and the Institute for Learning Innovation (ILI) will study how 3-D visualizations can most effectively be used to improve general public understanding of freshwater lake ecosystems and Earth science processes through the use of immersive three-dimensional (3-D) visualizations of lake and watershed processes, supplemented by tabletop science activity stations. Two iconic lakes will be the focus of this study: Lake Tahoe in California and Nevada, and Lake Champlain in Vermont and New York, with products readily transferable to other freshwater systems and education venues. The PI will aggregate and share knowledge about how to effectively utilize 3-D technologies and scientific data to support learning from immersive 3-D visualizations, and how other hands-on materials can be combined to most effectively support visitor learning about physical, biological and geochemical processes and systems. The project will be structured to iteratively test, design, and implement 3-D visualizations in both concurrent and staggered development. The public will be engaged in the science behind water quality and ecosystem health; lake formation; lake foodwebs; weather and climate; and the role and impact of people on the ecosystem. A suite of publicly available learning resources will be designed and developed on freshwater ecosystems, including immersive 3-D visualizations; portable science stations with multimedia; a facilitator's guide for docent training; and a Developer's Manual to allow future informal science education venues. Project partners are organized into five teams: 1) Content Preparation and Review: prepare and author content including writing of storyboards, narratives, and activities; 2) 3-D Scientific Visualizations: create visualization products using spatial data; 3) Science Station: plan, design, and produce hands-on materials; 4) Website and Multimedia: produce a dissemination strategy for professional and public audiences; 4) Evaluation: conduct front-end, formative, and summative evaluation of both the 3-D visualizations and science activity stations. The summative evaluation will utilize a mixed methods approach, using both qualitative and quantitative methods, and will include focus groups, semi-structured interviews, web surveys, and in-depth interviews. Leveraging 3-D tools, high-quality visual displays, hands-on activities, and multimedia resources, university-based scientists will work collaboratively with informal science education professionals to extend the project's reach and impact to an audience of 400,000 visitors, including families, youth, school field trip groups, and tourists. The project will implement, evaluate, and disseminate knowledge of how 3-D visualizations and technologies can be designed and configured to effectively support visitor engagement and learning about physical, biological and geochemical processes and systems, and will evaluate how these technologies can be transferred more broadly to other informal science venues and schools for future career and workforce development in these critical STEM areas.
COSI offers special event programming on a monthly basis designed to enhance the guest experience: primarily Science Day and Fun Day special events. Science Days are events that highlight science topics, especially those dealing with our specific areas of focus, and celebrations surrounding events with a science theme, such as Space and Stars Day. On the other hand, Fun Days are events that are appealing to guests and are simple to implement, such as appearances by local sports teams, celebrities, performance groups, etc. COSI would like to better understand the impact special events have in
COSI, in partnership with WOSU @ COSI, will be going forward with a project in which enhancements and other changes may be made to the WOSU exhibition space, entrance area, and adjacent hallway. This project may include, but is not limited to, introducing more elements of the PBS Kids brand, such as Sesame Street and Sid the Science Kid, into the exhibition space, introducing interactive elements regarding TV Production to the site, and adding loose parts to the Chroma Key exhibit. To inform decisions about the type and nature of enhancements most needed in the exhibit area, COSI desires to
Magnolia Consulting, LLC conducted a formative and summative evaluation to examine public perceptions of the utility and quality of two labs/exhibits within the North Carolina Museum of Natural Sciences Natural World Investigate Lab, Biofuels and Science of Scent. Appendix includes survey.
DATE:
TEAM MEMBERS:
North Carolina State Museum of Natural ScienceMary Styers
This report contains findings from a summative evaluation study of a set of four featured elements that comprise the new Nature Research Center of the North Carolina Museum of Natural Sciences. The elements were: 1) an exhibit, Ancient Fossils, New Discoveries; 2) Investigate Labs; 3) Daily Planet Scientist Talks; 4) Science Cafes. Evaluation was conducted as four distinct, multi-method studies to provide targeted understanding of visitor outcomes and experiences at each element. Findings across the four elements indicate that the features of the NRC are enjoyed by visitors and each supports