A large body of research highlights the benefits of storybooks for children's learning. In the context of preschool classrooms, the use of storybooks to engage young children in STEM is a frequent topic of practitioner-oriented articles. There is also an increasing number of informal STEM education (ISE) projects exploring how to leverage storybooks to engage young children and their families in different STEM content domains. While there is universal excitement for the potential of storybooks in ISE, there is an acknowledgment of a critical need for more cross-project sharing, more research, and more efforts to synthesize and share findings. This award will catalyze new research studies and partnerships to advance efforts in ISE contexts, including the role of books in the overall learning experience or program, how books are selected or designed, and how the reading is facilitated by teachers and families. Participants will be educators and researchers working with or studying family learning for preschool-age children (three to five years) using early childhood fiction books as a tool for engaging families in STEM topics and skills.
Storybook STEM will be implemented in four phases: (1) pre-convening activities to plan, synthesize existing resources, engage a broader group of educators and researchers beyond convening attendees, and prepare convening participants to maximize the value of the in-person discussions; (2) in-person convening to catalyze cross-project discussions, outline promising practices, and identify questions and ideas for the future; (3) evaluation of the impact and value of the convening, from the perspective of participants and a project steering committee; and (4) dissemination of findings and recommendations to educators and researchers within and beyond the ISE field. Outcomes include: (1) documenting current and past work in ISE and other fields; (2) summarizing key recommendations and resources from the reading, literacy, and early childhood development fields; and (3) outlining promising directions for future work.
The findings from this project will provide a critical resource to help broadening participation efforts be more effective and inclusive for audiences across the country. Research studies motivated by the convening will address the lack of empirical work on storybooks as a tool for ISE programs and advance the ISE field's knowledge of how to integrate these books effectively. Because storybooks are a highly accessible and almost universally used family learning resource, the topic of the convening will be relevant to a wide range of audiences and will help educators broaden access to ISE for traditionally underserved and under-resourced communities.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The project will develop and research the ways in which maker education activities can be leveraged to support intergenerational learning in hyper-vulnerable populations, such as families with an incarcerated parent. Maker education is often linked to STEM learning and uses hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. Research has shown that maker education activities support STEM learning and creativity, the development of STEM identities and dispositions, and create pathways towards STEM careers. The project will develop a series of project activities including bringing Science, Technology, Engineering, and Mathematics (STEM) learning experts to a women's minimum-security facility for lectures on research and a set of workshops exploring maker activities for the incarcerated women and their children. By researching trauma-informed maker practices for families with an incarcerated parent, the project will develop research findings related to and practical resources for supporting these practices in other informal STEM learning contexts.
While evidence shows that maker pedagogy can be effective in supporting STEM learning for diverse populations, little is known about how it might support STEM learning for incarcerated women and their children. The project will investigate: (1) the everyday STEM practices of incarcerated women and their children and how these practices can be supported and extended through maker activities; (2) how incarcerated women and their children are perceived with respect to STEM and the impact these perceptions have on developing STEM identities; and (3) what design principles for developing STEM learning emerge through the project research. Program activities and related research will be designed and researched through the collaboration of incarcerated women, university researchers from the project university partners, the Saint Louis University Prison Program, and the Federal Correctional Institution-Camp (Greenville Women's Minimum Security Facility). The project will use Social Design Experimentation (SDE) as the primary research method, which is used to design and study education interventions on site. SDE is unique in that participants, researchers and other stakeholders collaborate to meet the goals of the project and related research. Project deliverables, which will be widely disseminated to researchers and educators, will include articles in peer-reviewed and educator publications, strategies and design principles for developing maker education opportunities for hyper-vulnerable populations, and practical recommendations for a maker kit to facilitate STEM maker education activities and family interaction.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Museums, science centers, zoos and other informal science education (ISE) institutions often focus on the idea of "authenticity" to engage the public. Authenticity includes providing something real, original, or even awe-inspiring to the visitor or learner--be it an object, a context, or an experience. While those educators, exhibit designers, and program developers who work in ISE settings often recognize authenticity as an important part of many informal learning experiences, this may be simply be an assumption driven by tradition in practice versus a strategy supported by evidence. This project seeks to better understand how and/or why "the real thing" may (or may not be) important for supporting informal science learning. By examining what is already known about authenticity and learning, the project will inform best practices in ISE as well as point to gaps in knowledge that might need further research. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This research synthesis takes a systematic approach to identify and compile both theoretical and empirical literature to better understand the role authenticity may play in supporting informal science learning. This project will gather ISE literature related to the effects of "authenticity" on learner outcomes, and will look to neighboring disciplines such as psychology, anthropology, media studies, linguistics, marketing and others to seek relevant theoretical perspectives and empirical work that might further understanding of the potential role of authenticity in ISE. The initial phase of the project will focus on gathering theoretical perspectives and positions that help explain the value or importance (or perhaps non-importance) of "realness" as it relates to learning, interest, and experience. A panel of experts from multiple disciplines will convene to help identify key perspectives and frameworks that may clarify the role or impacts of authenticity. A second phase focuses on gathering and assessing empirical studies that support (or refute) the relevant perspectives and theories identified from the initial multi-disciplinary foray into authenticity. To ensure breadth and depth of review, the PIs, research librarians, graduate students, and special topics classes will engage in identifying, evaluating, summarizing, and synthesizing the relevant research (including gray literature) to produce an initial synthesis report that will be reviewed by select experts from the earlier panel. A second convening of practitioners (exhibit developers, educators, program designers, etc.) will be used to further contextualize the findings in ways that may better inform current practices in providing effective ISE. The resulting products include a peer-reviewed research synthesis and a practitioner handbook.
The proposed project's Broader Impacts lie in the potential to inform ISE practice in exhibit and program design and in the delivery of ISE-related experiences. Although the importance of the authenticity of an object or experience may ultimately be determined by the individual, this study will be able to provide guidance to help practitioners and scholars in making sometimes difficult design choices. Such insights may also inform other learning environments (e.g. the classroom) as well as other disciplinary areas (e.g. history, anthropology, art).
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Research on how museum staff are trained continues to emerge. Training varies considerably across institutions and typically includes observations, shadowing, and trial and error. While museum educators put high value on increasing visitor-centered participatory experiences, engagement based on acquisition-based theories of learning is still common among floor staff, even after training. Facilitating learning about science, technology, engineering, and mathematics (STEM) topics in ways that support visitors in constructing their own understanding is difficult, especially since floor staff/facilitators may be working simultaneously with children and adults of a range of ages, backgrounds, and goals. This project will advance understanding of how to facilitate open-ended learning experiences in ways that engage visitors in practices that align with the STEM disciplines. The project will result in an evidence-based facilitation framework and training modules for training informal science educators. The work is grounded in constructivist theories of learning and identity work and focuses on visitors constructing understanding of STEM topics through active engagement in the practices of STEM. This model also results in learning experiences in informal settings that are mutually reinforcing with the goals of schools. This research is being conducted through an established researcher-practitioner partnership between MOXI, the Wolf Museum of Exploration + Innovation and the University of California at Santa Barbara (UCSB).
The two primary goals of the work are to (1) enable visitors to better engage in STEM practices (practice-based learning) and (2) investigate the role of training in helping facilitators develop the practice-based facilitation strategies needed to support visitors' learning. STEM content in this study is physical science. Prior work resulted in two tools that constitute part of a facilitation framework (a practices-by-engagement matrix and three facilitation pathways) which help educators identify appropriate goals based on how the visitor is engaging with exhibits. The development of the final tool in the framework, facilitation strategies, and the refinement of the first two tools will be done using a design-based implementation research (DBIR) approach. Data collection and analysis will be directed and completed by research-practitioner teams of UCSB graduate students (researchers) and MOXI educators (practitioners); MOXI educators will be both participants and researchers. Data collection activities include: video data using point-of-view cameras worn by visitors and educators; interviews of educators and visitors; observations of the training program; and educator reflections. In the final year, a small field test will be done at six sites, representing different types of museums. Interviews and reflections comprise the data collection at the field sites.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Museums in the US receive approximately 55 million visits each year from students in school groups. Field trip visits to an art museum have been found to positively impact critical thinking skills, empathy and tolerance - an increase that can be even more significant for youth from rural or high-poverty regions. While field trips are popular, especially at science museums, there have been no experimental studies about their impact on STEM career choices and interests, much less any which used a culturally sensitive and responsive approach. Given the resources put into field trips, this study investigates if causal links can be drawn between museum experiences and impact on youth. The Museum of Science & Industry uses a Learning Labs approach for engaging its visitors. These "Learning Labs" are facilitated experiences that run roughly an hour. Currently there are 12 lab topics. This study focuses on MedLab--one of the learning labs--as the setting for the research. MedLab is designed for on-site and online experience using ultra-sophisticated and highly versatile technology in challenges taken from research on the top healthcare issues that face adolescents in their communities.
This study is informed by research and theory on Social Cognitive Career Theory (SCCT) and Racial and Ethnic Identity. The former describes a process many follow when thinking about career options, broadly. The latter describes how people see themselves in the world through their membership with a racial and/or ethnic group. Both processes can collectively influence STEM career choices. This study follows an embedded mixed-method design. The quantitative portion includes an experimental, pre/post/delayed post-test design of both educators and their students using multiple measures taken mostly from previously published instruments. The qualitative portion includes observation rubrics of MedLab sessions along with interviews and focus groups with staff, educators, students and families that take place both within and outside of the museum. This is an experimental study of moderate size of both heterogeneous teacher and student populations in real world settings. It involves comparing youth and educators that participate in MedLab with those who do not. By conducting research that looks at each community through the lens of their unique experiences, the research will measure their impact more sensitively and authentically, addressing a gap in current literature on informal science, technology, engineering, or mathematics (STEM) career education with diverse students.
This study is funded by the Advancing Informal STEM Learning (AISL) program and the Innovative Technology Experiences for Students and Teachers (ITEST) program.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Families play a large role in igniting children's interest in science pathways, but they may not always have access to high-quality materials that demonstrate clear connections between science and their daily lives. This project will address this issue by developing high-interest materials that teach the science of food preparation to families with children ages 7-13. These materials include the following four components: (a) Food Labs, food-based investigations taking place in museums or in food service facilities; (b) take-home kits allowing families to conduct similar types of Food Labs at home; (c) a series of question starters called Promoting Interest and Engagement in Science (PIES) designed to facilitate meaningful family conversations around food preparation; and (d) a mobile app designed to deepen families' understandings of relevant science concepts and containing embedded measures of STEM learning. This project will advance knowledge regarding features of take-home materials that foster family science learning and ignite children's interest in science pathways.
This Innovations in Development Project will result in empirically-tested instructional materials that support families, with children ages 7-13, in conducting scientific investigations and holding scientific conversations related to food preparation. Kent State University, in partnership with The Cincinnati Museum Center and La Soupe, a food service provider for families who face food insecurity, will collaboratively develop and test the four interrelated sets of instructional materials mentioned above that are designed to deepen families' scientific content knowledge related to the chemistry of food preparation. To iteratively design and evaluate these materials, the team will conduct both laboratory and in-vivo experiments using a Solomon design with a pre- and post-demonstration survey. The survey will measure children's interest, knowledge, and engagement. For a month after interacting with instructional materials, families will document their science activity at home through the app. Additionally, through analyzing audio-recordings, the team will determine whether and how families ask questions using the PIES materials. Finally, post-demonstration interviews with participating families will focus on the usability and accessibility of the instructional materials. Quantitative and qualitative analyses of the pre-post surveys, interview transcripts, and audio-recordings will be used to improve the instructional materials, and the revised materials will be re-assessed using the same experimental methods and outcome measures. The final set of instructional materials will be developed and widely disseminated for easy use at other science museums, food service providers, and in families' homes. This project leverages partnerships to generate empirical knowledge on features of learning environments that support family science learning and engagement, resulting in empirically-based materials designed to broaden participation in science. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
The role of afterschool programs in the science, technology, engineering, and mathematics (STEM) learning ecosystem has grown over the past two decades, which has led to increasing efforts to support and improve program quality. These efforts include developing STEM programs and curricula, creating standards for facilitating informal STEM learning experiences, building networks of support, and developing tools for assessment and evaluation. However, such efforts may have limited impact in terms of ongoing quality improvement. STEM curricula vary in disciplinary focus, quality and may not apply to local contexts and needs. Many afterschool programs resort to using simple STEM kits or online activities rather than rigorous curricula with support for educators. The project will study how the California Department of Education's (CDE) efforts to change organizational culture to support continuous quality improvement (CQI) have affected the offerings and quality of afterschool STEM in the state's more than 4,500 publicly funded afterschool sites. The EPISTEMIC project will contribute new research findings on how CQI can increase access to higher quality STEM learning opportunities for underserved youth. Even more important, the project will provide new insights on how organizational culture affects participation in and implementation of afterschool CQI.
The team will use an organizational theory framework and a mixed methods approach to conduct three research activities: (1) Describe the organizational context through interviews, participant observations, and artifact analysis to map and describe the overall support system as a context for understanding organizational culture change; (2) Describe change over time in organizational culture, CQI processes, and STEM program offerings and quality through surveys/interviews of afterschool youth, staff, directors, and grantee representatives; and (3) Generate explanations about the relationships between organizational culture, CQI, and STEM quality in different contexts through in depth case studies. Bringing organizational culture, CQI, and STEM offerings and quality into shared focus is the most important intellectual contribution of this work. Organizational theory's sensemaking concept will guide analyses to describe, exemplify, and generate theoretical explanations for patterns in organizational culture, CQI, and STEM program changes, with attention to relevant contextual factors.
Continuous quality improvement provides tools for afterschool STEM staff to identify needs and ways to improve. The EPISTEMIC study will contribute recommendations on the systemic, organizational, and cultural aspects of improvement strategies relevant to policymakers, funders, support providers, and afterschool organizations in California, as well as other state or nongovernmental support systems around the country. The study will also produce CQI guidelines for reflecting on and incorporating changes to organizational culture as part of CQI for afterschool staff and site directors. These will be helpful for practitioners around the country. The study's focus on three organizational contexts -- school district, national afterschool, and local afterschool -- will extend the relevance of the findings and recommendations, which will be disseminated through forums, workshops, and articles in practice and policy-oriented publications. The study will also benefit the research community by providing a framework and methods for studying organizational culture and CQI. The findings on the relationships between organizational culture, CQI, and STEM offerings and outcomes will provide a foundation for further research on how these relate to STEM learning outcomes for youth. EPISTEMIC is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Patrik LundhAndrea BeesleyTimothy PodkulCarrie Allen
Increasingly, scientists and their institutions are engaging with lay audiences via media. The emergence of social media has allowed scientists to engage with publics in novel ways. Social networking sites have fundamentally changed the modern media environment and, subsequently, media consumption habits. When asked where they primarily go to learn more about scientific issues, more than half of Americans point to the Internet. These online spaces offer many opportunities for scientists to play active roles in communicating and engaging directly with various publics. Additionally, the proposed research activities were inspired by a recent report by the National Academies of Sciences, Engineering, and Medicine that included a challenge to science communication researchers to determine better approaches for communicating science through social media platforms. Humor has been recommended as a method that scientists could use in communicating with publics; however, there is little empirical evidence that its use is effective. The researchers will explore the effectiveness of using humor for communicating about artificial intelligence, climate science and microbiomes.
The research questions are: How do lay audiences respond to messages about scientific issues on social media that use humor? What are scientists' views toward using humor in constructing social media messages? Can collaborations between science communication scholars and practitioners facilitate more effective practices? The research is grounded in the theory of planned behavior and framing as a theory of media effects. A public survey will collect and analyze data on Twitter messages with and without humor, the number of likes and re-tweets of each message, and their scientific content. Survey participants will be randomly assigned to one of twenty-four experimental conditions. The survey sample, matching recent U.S. Census Bureau data, will be obtained from opt-in panels provided by Qualtrics, an online market research company. The second component of the research will quantify the attitudes of scientists toward using humor to communicate with publics on social media. Data will be collected from a random sample of scientists and graduate students at R1 universities nationwide. Data will be analyzed using descriptive statistics and regression modeling.
The broader impacts of this project are twofold: findings from the research will be shared with science communication scholars and trainers advancing knowledge and practice; and an infographic (visual representation of findings) will be distributed to practitioners who participate in research-practice partnerships. It will provide a set of easily-referenced, evidence-based guidelines about the types of humor to which audiences respond positively on social media.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Sara YeoLeona Yi-Fan SuMichael Cacciatore
resourceprojectProfessional Development, Conferences, and Networks
This project will consider how research on imaginative thinking, and perspectives on the role of imagination in STEM practice and STEM education, can be systematically applied to support STEM learning in museum contexts. Common conceptions of science as non-imaginative are persistent, but scholarship across disciplines suggests critical roles for imagination, both in the practice of STEM and in shaping learners' perceptions of themselves as part of STEM. Further, evidence from the fields of neuroscience, psychology, child development and education suggests ways that imagination can be fostered and improved, and that these understandings could be applied to the design of museum experiences in order to improve STEM outcomes.
The activities of this project, led by the Museum of Science, Boston, both synthesize and generate knowledge at the intersections of imagination, STEM, and education practice in ways that are actionable for museum professionals. Activities include: a literature review, a document review, and a survey of ISE professionals; an in-person convening of STEM professionals (researchers, practitioners, educators and others); and the development and dissemination of products designed to inform future project development. The goals of the project are to: 1) prompt conversations about imaginative thinking across the Informal Science Education (ISE) field, and between ISE and other fields; 2) identify priority areas for research and development that can advance the field's understandings at the intersections of imagination, STEM, and learning; and 3) catalyze future research and development efforts that can advance the field. The intent is for the integration scholarship on imagination, STEM, and learning within museums' research and development efforts to lead to projects that describe, test, and refine theoretical frameworks and concrete strategies for supporting imaginative thinking among public audiences through exhibitions, programs, and other designed experiences.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Vassar College is conducting a 2.5-day conference, as well as pre- and post-conference activities, that convenes a multi-disciplinary, multi-institutional (USA and international) team to conceptualize and plan various research, education and outreach activities in informal learning, focusing on the seminal concept of tensegrity and its applications in many fields of science and mathematics. Tensegrity is the characteristic property of a stable three-dimensional structure consisting of members under tension that are contiguous and members under compression that are not.
The conference will bring together researchers and practitioners in informal learning and researchers in the various disciplines that embrace tensegrity (mathematics, engineering, biology, architecture, and art) to explore the potential that tensegrity has to engage the public in informal settings, especially through direct engagement in creating such structures. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
To date there have been no sustained informal educational projects and research around the topic of tensegrity. However, there is considerable related work on learning through "making and tinkering" upon which the participants will adapt and expand. The intended conference outcomes are to produce prototypes of activities, a research agenda, and lines of development with the potential to engage the wider public. A key priority of the gathering is the development of new partnerships between researchers and creators of tensegrity systems and the informal learning professionals. The long-term project hypothesis is that children and adults can engage with tensegrity through tinkering with materials and becoming familiar with a growing set of basic structures and their applications. The activities will include evaluation of the conference and a social network analysis of the collaborations that result.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
Research that seeks to understand classroom interactions often relies on video recordings of classrooms so that researchers can document and analyze what teachers and students are doing in the learning environment. When studies are large scale, this analysis is challenging in part because it is time-consuming to review and code large quantities of video. For example, hundreds of hours of videotaped interaction between students working in an after-school program for advancing computational thinking and engineering learning for Latino/a students. This project is exploring the use of computer-assisted methods for video analysis to support manual coding by researchers. The project is adapting procedures used for computer-aided diagnosis systems for medical systems. The computer-assisted process creates summaries that can then be used by researchers to identify critical events and to describe patterns of activities in the classroom such as students talking to each other or writing during a small group project. Creating the summaries requires analyzing video for facial recognition, motion, color and object identification. The project will investigate what parts of student participation and teaching can be analyzed using computer-assisted video analysis. This project is supported by NSF's EHR Core Research (ECR) program, the STEM+C program and the AISL program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. The project is funded by the STEM+Computing program, which seeks to address emerging challenges in computational STEM areas through the applied integration of computational thinking and computing activities within disciplinary STEM teaching and learning in early childhood education through high school (preK-12). As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
The video analysis systems will provide video summarizations for specific activities which will allow researchers to use these results to quantify student participation and document teaching practices that support student learning. This will support the analysis of large volumes of video data that are often time-consuming to analyze. The video analysis system will identify objects in the scene and then use measures of distances between objects and other tracking methods to code different activities (e.g., typing, talking, interaction between the student and a facilitator). The two groups of research questions are as follows. (1) How can human review of digital videos benefit from computer-assisted video analysis methods? Which aspects of video summarization (e.g., detected activities) can help reduce the time it takes to review the videos? Beyond audio analytics, what types of future research in video summarization can help reduce the time that it takes to review videos? (2) How can we quantify student participation using computer-assisted video analysis methods? What aspects of student participation can be accurately measures by computer-assisted video analysis methods? The video to be used for this study is drawn from a project focused on engineering and computational thinking learning for Latino/a students in an after-school setting. Hundreds of hours of video are available to be reviewed and analyzed to design and refine the system. The resulting coding will also help document patterns of engagement in the learning environment.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Marios PattichisSylvia Celedon-PattichisCarlos LopezLeiva
The project will develop and research how an emerging technology, immersive virtual reality (IVR) using head mounted displays (HMDs), can enhance ocean literacy and generate empathy towards environmental issues. Recent advances in design have resulted in HMDs that provide viscerally realistic and immersive experiences that situate participants in underwater or other remote environments. IVR can provide many people with virtual access to these environments, including persons with disabilities, people living away from coastal areas, or those who lack access for other reasons (e.g., low-income families, underserved/underrepresented communities, persons untrained in diving). The project will develop a high quality 360-degree underwater film that includes live action footage, animation, and interactive elements. The IVR experience will take the participant through an immersive underwater journey of a Pacific reef, using realistic visualizations, narrative, and a compelling story to engage participants in learning the ecology and biology of coral reefs, as well as the impacts of climate change and human disturbances on ocean ecosystems. In addition to the IVR ocean journey, the project will integrate interactive functionality of being on a reef during mass coral spawning, an annual natural phenomenon through which coral reefs replenish their populations. With hand-held controllers, participants will be able to "swim" through the water, watch the degraded reef recover and grow and will have the ability to change the rate of coral recovery and learn how increases in temperature impede coral recovery. While research has been conducted on early, desk-top versions of IVR, the potential impact of IVR on learning is still unclear. The research findings will help guide the development of IVR for use in informal STEM environments such as aquariums, zoos, science museums, and others. The IVR experience will be shared on online platforms for home viewing, at film festivals and conferences, and in informal learning environments.
The project addresses the need for research on the impacts of IVR devices as it become more affordable and more widely used at home and in other informal and formal environments. Few studies have investigated how design elements impact the user in IVR, in which the increased immersion affects the stimuli perception and cognitive processing. The research will assess the learning affordances and impacts of the IVR experience on participant ocean literacy (adapting items from an existing ocean literacy survey), environmental empathy/feelings of presence (naturalistic observations and post-experience interviews), and perceived self-efficacy (pre-post survey, post-interview interviews). In addition, the project will research how segmentation (i.e., a continuous experience vs. an experience with breaks), generative learning tasks (hands-on experiences and interactive during IVR), and gender of the narrator in an IVR experience supports learning about ocean environments. Researchers will collect data from students attending high schools with predominantly minority student enrollments. Research findings will be widely shared through peer-reviewed publications, conference presentations, and publications for educators and designers.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.