Skip to main content

Community Repository Search Results

resource research Public Programs
Dabney and colleagues examine the relationship between university students’ reported interest in STEM careers and their participation in out-of-school time science activities during middle and high school. The researchers examined the specific forms of OST science activities associated with STEM career interest and the correlations among those forms.
DATE:
TEAM MEMBERS: Melissa Ballard
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California.
DATE:
TEAM MEMBERS: Edwin Obergfell Philip Villamor
resource research Public Programs
The impact of two science enrichment programs on the science attitudes of 330 gifted high school students was evaluated using a multimethod, multiperspective approach that provided a more comprehensive evaluation of program impact on science attitudes than did previous assessments of science programs. Although pre-post comparisons did not indicate positive impact on science attitudes, other measures provided strong evidence of program effectiveness. Program benefits were greater among girls, those who had more supportive families and teachers, and those who entered the programs with greater
DATE:
TEAM MEMBERS: Jayne Stake Kenneth Mares
resource project Media and Technology
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE: -
TEAM MEMBERS: WGBH Educational Foundation Paula Apsell
resource research Public Programs
The article discusses the Science, Technology, Engineering and Mathematics: Information, Technology and Scientific Literacy (STEM-ALL) for ALl Learners project of Emporia State University, Kansas. The project is an interdisciplinary program for teaching information, technology and scientific-literacy that brings STEM content into Master of Library Science curriculum. It aims to create an Information, Technology and Scientific Literacy Certificate for educators to earn across degree programs.
DATE:
TEAM MEMBERS: Mirah Dow
resource research Informal/Formal Connections
This article is a response to Pike and Dunne's research. The focus of their analysis is on reflections of studying science post-16. Pike and Dunne draw attention to under enrollments in science, technology, engineering, and mathematics (STEM) fields, in particular, in the field of physics, chemistry and biology in the United Kingdom. We provide an analysis of how the authors conceptualize the problem of scientific career choices, the theoretical framework through which they study the problem, and the methodology they use to collect and analyze data. In addition, we examine the perspective they
DATE:
TEAM MEMBERS: Mehment Aydeniz Lynn Hodge
resource research Public Programs
This presentation given at the 2013 Materials Research Society (MRS) Spring Meeting examines evidence for the effectiveness of STEM education programs at the National High Magnetic Field Laboratory.
DATE:
TEAM MEMBERS: Roxanne Hughes
resource project Media and Technology
Using STEM America (USA) is a two-year Pathways project designed to examine the feasibility of using informal STEM learning opportunities to improve science literacy among English Language Learner (ELL) students in Imperial County, California. Project partners include the Rueben H. Fleet Science Center and the University of California, San Diego (UCSD). The project's goals are to support teachers in the development of informal science education opportunities for English learners, partner with students in grades 7-12 to create activities and exhibits, deliver student-produced products to community members, and sustain and disseminate the activities through the development of web-based teacher tools. The teachers will work with informal science education experts, STEM professionals, and undergraduate students to develop and implement the program lessons with their 7-12 grade students. The activities and exhibits designed for community audiences will be used in the Imperial Valley Discovery Zone, slated for completion in fall 2013. Special emphasis will be placed on understanding English scientific word frames and science content specific vocabulary to help ELL students express complex scientific concepts in English. The project deliverables in this pilot project include a comprehensive teacher professional development strategy, student-developed informal science activities and exhibits, a project website, and multiple teacher resources (lesson plans, how-to guides, training materials, and social networking tools). Teachers will receive 45 hours of professional development during the summer with an additional 20 hours of support provided during the school year. UCSD's Jacob's School of Engineering will provide training on solar energy micro-grids using a micro-grid observatory to be located in Imperial Valley. English language development training will be provided by the University of California's Professional Development Institute (UCPDI) and address the role of language objectives in scientific conceptual knowledge and language development; using science and language to improve classroom questioning/discussion; and teaching academic language to English learners. The informal science education component of the training provided by the Fleet Science Center will address topics such as questioning strategies, scientific reasoning frameworks, communicating science to public audiences, and learning "high level" science content using hands-on approaches. The project design builds on research which supports an active learning approach that mirrors scientific practice and is one of the strengths of informal science learning environments. The question to be addressed by the USA Project is: "Can informal STEM activities with embedded English Language development strategies assist English learner students to increase their English language competency and their interest in STEM subjects?" The PI seeks to identify the impact that teachers have on guiding students in inquiry-based informal STEM education, evaluate the academic outcomes for students, and measure changes in community interest, understanding, and attitudes towards STEM and STEM occupations. The USA Project is designed to reach approximately 200 underserved students and will promote the participation of at least 400 additional students, parents, and other rural community members. It is anticipated that this project will result in the development of a model for teacher-led informal STEM education, increased STEM learning opportunities for the community, and the development of a network of educational institutions that helps to bridge formal and informal STEM learning and learning environments.
DATE: -
TEAM MEMBERS: Edwin Obergfell Philip Villamor
resource project Professional Development, Conferences, and Networks
This MSP-Start Partnership, led by Widener University, in partnership with Bryn Mawr College, Delaware County Community College, Philadelphia University, Lincoln University, and Haverford Township School District, is developing the Greater Philadelphia Environment, Energy, and Sustainability Science (ES)2 Teacher Leader Institute. Additional partners include the Center for Social and Economic Research at West Chester University, Delaware Valley Industrial Resource Center, Energy Coordinating Agency, US EPA Region 3 Office of Innovation, National Center for Science and Civic Engagement and its SENCER program, Pennsylvania Campus Compact, Philadelphia Higher Education Network for Neighborhood Development, Project Kaleidoscope, Sustainable Business Network of Greater Philadelphia, and the 21st Century Partnership for STEM Education. Building on a base of relationships developed over the past five years by many partners in the Math Science Partnership of Greater Philadelphia, the project brings together faculty and resources from multiple institutions (a "Mega-University" model) to develop a coherent, innovative, and content-rich, multi-year curriculum in environment, energy, and sustainability science for an Institute that leads to a newly developed Master's degree. Teachers participating in the Institute (A) improve their STEM content knowledge in areas critical to human environmental sustainability, (B) improve their use of project based/service learning and scientific teaching pedagogies in their teaching, (C) engage in real-world sustainability problem solving in an externship with a local business, non-profit or government organization that is active in the newly emerging green economy, and (D) develop important leadership skills as change agents in their schools to improve student interest, learning, and engagement in STEM education. The Institute aims to serve as a regional hub, connecting educational, business, non-profit and government organizations to strengthen the STEM education and workforce development pipelines in the region and simultaneously support positive social change toward environmental sustainability and citizenship. The project's "Mega-University" and "Institute as a regional connector-hub" approaches are powerful models of collaboration that could have widespread and significant national applicability as organizations and systems adjust to the new challenges of our global economy and to the needed transition to sustainability.
DATE: -
TEAM MEMBERS: Stephen Madigosky William Keilbaugh Victor Donnay Bruce Grant Thomas Schrand
resource evaluation Public Programs
Evaluators sought to determine impact on math attitude and content knowledge of students (3rd - 6th grade), and math literacy workers (high school and college students), based on pre-post testing and observation of YPP after school programs, in which college and high school students teach math games to elementary and middle school students in marginalized and vulnerable communities. The study focused on the Chicago YPP site, 1 of 7 in the YPP national network. Increases in math attitude scores were not statistically significant, however in some instances evaluators found significant increases
DATE:
TEAM MEMBERS: Norman Lederman Young People's Project, Inc.
resource project Media and Technology
This collaborative project aims to establish a national computational resource to move the research community much closer to the realization of the goal of the Tree of Life initiative, namely, to reconstruct the evolutionary history of all organisms. This goal is the computational Grand Challenge of evolutionary biology. Current methods are limited to problems several orders of magnitude smaller, and they fail to provide sufficient accuracy at the high end of their range. The planned resource will be designed as an incubator to promote the development of new ideas for this enormously challenging computational task; it will create a forum for experimentalists, computational biologists, and computer scientists to share data, compare methods, and analyze results, thereby speeding up tool development while also sustaining current biological research projects. The resource will be composed of a large computational platform, a collection of interoperable high-performance software for phylogenetic analysis, and a large database of datasets, both real and simulated, and their analyses; it will be accessible through any Web browser by developers, researchers, and educators. The software, freely available in source form, will be usable on scales varying from laptops to high-performance, Grid-enabled, compute engines such as this project's platform, and will be packaged to be compatible with current popular tools. In order to build this resource, this collaborative project will support research programs in phyloinformatics (databases to store multilevel data with detailed annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching evolution at the genomic level, all within the context of a virtual collaborative center. Biology, and phylogeny in particular, have been almost completely redefined by modern information technology, both in terms of data acquisition and in terms of analysis. Phylogeneticists have formulated specific models and questions that can now be addressed using recent advances in database technology and optimization algorithms. The time is thus exactly right for a close collaboration of biologists and computer scientists to address the IT issues in phylogenetics, many of which call for novel approaches, due to a combination of combinatorial difficulty and overall scale. The project research team includes computer scientists working in databases, algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and a record of fundamental contributions, to provide the required breadth and depth. This project will bring together researchers from many areas and foster new types of collaborations and new styles of research in computational biology; moreover, the interaction of algorithms, databases, modeling, and biology will give new impetus and new directions in each area. It will help create the computational infrastructure that the research community will use over the next decades, as more whole genomes are sequenced and enough data are collected to attempt the inference of the Tree of Life. The project will help evolutionary biologists understand the mechanisms of evolution, the relationships among evolution, structure, and function of biomolecules, and a host of other research problems in biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security. The project will publicize evolution, genomics, and bioinformatics through informal education programs at museum partners of the collaborating institutions. It also will motivate high-school students and college undergraduates to pursue careers in bioinformatics. The project provides an extraordinary opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in one of the most exciting interdisciplinary areas in science. The collaborating institutions serve a large number of underrepresented groups and are committed to increasing their participation in research.
DATE: -
TEAM MEMBERS: Tandy Warnow David Hillis Lauren Meyers Daniel Miranker Warren Hunt, Jr.
resource evaluation Media and Technology
In MIT’s NSF-funded Terrascope Youth Radio (TYR) program, urban youth, many from groups historically underrepresented in the sciences, worked as paid interns who received training in radio production, reporting and writing stories with scientific content and audio storytelling to create environmentally oriented audio pieces that were engaging and relevant to their own and their peers’ lives. Teen interns participated between July 2008 and Autumn 2012. TYR’s goals were to improve a broad audience of teens’ engagement with, knowledge of, and attitudes about science, technology, engineering, and
DATE:
TEAM MEMBERS: Karen Gareis Massachusetts Institute of Technology Karina Lin Irene F Goodman